
FA
C

H
H

O
C

H
SC

H
U

LE
 K

IE
L

H
oc

hs
ch

ul
e

fü
r

A
ng

ew
an

dt
e

W
is

se
ns

ch
af

te
n

Fachhochschule Kiel
Faculty of Computer Science and Electrical Engineering

Information Engineering

Master Thesis

Automatic Assessment of Applications Security Aspects running in
Cloud Environments

wr i t ten by: Jannik Hollenbach

First Examiner : Prof. Dr.-Ing. Meiko Jensen

Second Examiner : Rüdiger Heins, M.Sc.

Date: August 2, 2020

mailto:jannik.hollenbach@student.fh-kiel.de
mailto:meiko.jensen@fh-kiel.de
mailto:ruediger.heins@iteratec.com

Abstract

One challenge security teams face when adopting cloud-based systems is the ability
to ensure that all deployed applications follow security guidelines. This work suggests
to use the API of the cloud provider to fetch all services running inside the cloud en-
vironment of a company. This inventory of services can then be used to automate
a set of security scans for the automatically discovered services, including Dynamic
Application Security Scans (DAST) for web applications and Static Application Security
Scans (SAST) for deployed artifacts such as container images. This approach is demon-
strated with a prototype developed to automatically discover and scan containerized
applications inside Kubernetes clusters. In an evaluation of the prototype, it was shown
that it is possible to use this approach to automatically discover some vulnerabilities
with this approach.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Research Plan . 6
1.3 Prior Art . 7

2 Kubernetes as a Cloud Environment 8
2.1 What is a Cloud Environment? . 8
2.1.1 Distribution of Security Responsibilities . 9
2.2 What is Kubernetes? . 11
2.2.1 History of Kubernetes . 11
2.2.2 How Kubernetes is Used . 12
2.2.3 Classification of Kubernetes in the Cloud Landscape 13
2.3 Anatomy of a Kubernetes Cluster . 16

3 Security in Kubernetes Applications 21
3.1 Security Aspects of Kubernetes Components 21
3.2 Security Aspects of Application running inside Kubernetes Clusters 24
3.3 Privilege Escalation in Kubernetes Clusters 25

4 Automatic Security Verification in Kubernetes Prototype 29
4.1 Prototype Goals . 29
4.2 Application Lifecycle Tracking . 30
4.2.1 Comparison to Continuous Integration Approaches 31
4.3 Prior Art . 31
4.4 Architecture of the Prototype . 33
4.5 SecureCodeBox Security Test Orchestration 35
4.6 Automatic Security Assessment of HTTP Services 37
4.6.1 External Attack Surface via Ingress Resources 37
4.6.2 Internal Attack Surface via Service Resources 39
4.6.3 Scanners used for the Security Assessment 40

3

Contents

4.7 Automatic Security Assessment of Container Images 41
4.8 Automatic Security Assessment of Kubernetes Namespaces 44
4.9 Example Auto-Discovery Process . 45

5 Prototype Verification 48
5.1 Evaluation Cluster Setup . 48
5.2 Auto-Discovery Scan Results for OWASP Juice Shop 49
5.2.1 Scans Created by the Auto-Discovery Prototype 49
5.2.2 Finding Overview . 50
5.2.3 Problems while Scanning Juice Shop . 54
5.3 Auto-Discovery Scan Results for BodgeIt Store 55
5.3.1 Scans Created by the Auto-Discovery Prototype 55
5.3.2 Finding Overview . 56
5.3.3 Problems while Scanning BodgeIt Store 59
5.4 Application Lifecycle Tracking . 60
5.5 Prototype Result Summary . 61

6 Conclusion 62
6.1 Summary . 62
6.2 Future Work . 63

A Appendix 82
A.1 Prototype Evaluation using OWASP Juice Shop 82
A.1.1 OWASP Juice Shop Deployment . 82
A.1.2 Findings Identified for OWASP Juice Shop 84
A.2 Prototype Evaluation using BodgeIt Store 87
A.2.1 BodgeIt Store Deployment . 87
A.2.2 Findings Identified for BodgeIt Store . 88

4

1 Introduction

1.1 Motivation

In recent years, the development process of many software teams has changed dras-
tically. The introduction of new tools and methodologies like agile development[1],
DevOps[11] and cloud computing[4] have enabled many software teams to develop and
deploy their applications more quickly and more independently.

While this is great for the general productivity of an organization, the increased speed
and autonomy can be a daunting perspective for traditional security teams. The security
teams have to keep up with the increased speed of the development teams while
still ensuring the security of the individual applications and the company’s general
infrastructure. This is especially hard for security professionals as they are usually
heavily outnumbered by developers in their organizations, often coming down to a single
security engineer for a hundred developers.[11] [11, 137, 20]

One approach to address these issues are extensions to the DevOps methodology,
often referred to as DevSecOps. While DevOps is focussed on breaking the silos
between development and operation, DevSecOps tries to the same, while also including
security in the process. DevSecOps makes security a part of the process, not just an
afterthought. While most changes required are organizational, DevSecOps often also
includes technical processes to automate certain aspects of the security assessment
of the developed software systems. This includes automatic security assessments in
the build pipelines of software projects and also the automatic assessment of software
systems during their runtime. [11, 137, 20]

One aspect required to perform automatic assessment is to have access to a reliable list
of all systems operated by the organizations. This is especially relevant for cloud-based
systems where it is straightforward for an autonomous team or even an individual in the

5

1 Introduction

team to spin up a new service, with little to no oversight. As each new service introduces
new potential vulnerabilities this can be cause for security professionals to be skeptical
about the adoption of cloud systems in an organization. [11, 3, 5]

1.2 Research Plan

This work will explore the possibilities to use the API provided by a cloud environment
to automatically generate an inventory of all security relevant resources in the environ-
ment. To limit the scope of the work, the work will focus on the Kubernetes container
orchestration system as an example of a cloud-based environment. As Kubernetes is
primarily focused on running web/HTTP based applications, the focus of the security
assessments in this work is on HTTP based applications. The security of the automati-
cally discovered services/resources will then be assessed by different security scanning
tools to ensure that these resources are deployed according to best practices and don’t
contain any obvious vulnerabilities.

Research Question: How can the information from the Kubernetes API be used to
automatically assess security aspects of applications running inside a Kubernetes
cluster?

To highlight how the learnings from such a Kubernetes based system can be applied
to the broader landscape of cloud environments, Kubernetes will be introduced and
categorized according to the definition of cloud computing by the National Institute of
Standards and Technology (NIST). The different components which make up Kuber-
netes clusters are introduced to investigate how these components work together and
explain which efforts have to be taken to secure Kubernetes as an underlying cloud
environment.

Additionally, to protections against regular application threats like SQL Injection (SQLi)
and Cross Site Scripting (XSS) attacks, Kubernetes clusters also need to be secured to
ensure that applications can’t be compromised from within the cluster. These aspects
are highlighted by a literature review in chapter 3 and are later used to determine the
scanners used to assess application security aspects.

To explore the possibilities, an auto-discovery prototype is built, to implement the

6

1 Introduction

concepts described above. The architecture of the prototype is oriented upon the design
of Kubernetes internal components, namely Controllers, this allows the prototype to
integrate deeply into Kubernetes and gives it full access to the API. This prototype is then
used in a demo Kubernetes cluster to demonstrate the possibilities of an auto-discovery
system for assessing the security aspects of cloud-based applications.

1.3 Prior Art

Prior art in the exact field is sparse and often only addressed by the industry, not by
academic research. As such this work is built upon prior art and research of multiple
different fields to address the research question:

• Classification of Kubernetes into the cloud landscape by using both literature
describing Kubernetes and the most commonly used definition of cloud computing
in literature in chapter 2.

• Investigation into Kubernetes components and best practices to extend the Ku-
bernetes behaviors to research possibilities of addressing the research ques-
tion.chapter 2

• Security aspects of applications on Kubernetes to research which areas of aspects
are relevant to the security of applications on Kubernetes in chapter 3.

• Research into similar projects trying to achieve security assessments automatically
for cloud-based applications and Kubernetes in particular in chapter 4.

7

2 Kubernetes as a Cloud Environment

In this chapter, the Kubernetes container orchestration system is introduced. To classify
how Kubernetes fits into the broader landscape of cloud environments, the most common
definition of cloud computing is used. This classification is later used to see how much
the results of this work can be applied to other types of cloud environments.

2.1 What is a Cloud Environment?

The most commonly used definition for cloud computing[25] stems from the National
Institute of Standards and Technologies Special Publication 800-145 (NIST SP 800-
145)[4]. In this definition, cloud computing is described by five essential characteristics,
three service models, and four deployment models.

The essential characteristics of the NIST SP 800-145 consist of five properties shared
by cloud environments. They are useful to understand whether a system fits into the
cloud computing landscape or if the technology serves a different purpose.

The service models are a useful tool to sort the different services provided by a cloud
provider or a specific open source project into one of these categories. This lets users
better understand which responsibilities are handled by the service and which have
to be handled by themself. This separation of security responsibilities will be further
discussed in section 2.1.1.

The third part of the NIST SP 800-145 is the classification of cloud environments into
four deployment models:

• Public Cloud: Public clouds are shared by multiple organizations and available to

8

2 Kubernetes as a Cloud Environment

everybody.

• Private Cloud: Private clouds are exclusively used by one organization.

• Community Cloud: Community clouds are shared by multiple organizations but
are, in contrast to public clouds, not available to the general public.

• Hybrid Cloud: Applies when two or more of the other deployment models are
combined.

This work will focus mainly on Kubernetes as an example of a cloud computing en-
vironment. How Kubernetes fits into the NIST SP 800-145 definition is discussed in
section 2.2.3.

2.1.1 Distribution of Security Responsibilities

In cloud applications the responsibility to secure different layers is distributed between
two parties, the Cloud Service Provider (CSP), and the consumer. When using a public
cloud the CSP is likely one of the big players in the fields like Amazon Web Services
(AWS)[52], Microsoft’s Azure[141] or Google Cloud Plattform (GCP)[98]. The CSP
provides the customer with a large number of different services. These services can be
anything from providing access to a virtual machine to run generic software on top of,
to extremely specific services catered to only a small section of an industry, like AWS
Groundstation, a tool which lets you control a fleet of satellites.[56] Using the NIST SP
800-145 definition of cloud computing, these services can be broken down into the three
service models:

• Infrastructure as a Service (IaaS): Provisioning of generalized compute re-
sources. E.g. Virtual Machine (VM)

• Platform as a Service (PaaS): Provisioning of specialized compute resources,
where the underlying infrastructure is managed by the CSP. E.g. managed ap-
plication runtimes like AWS Lambda[58], Azure Functions[61], or GCP’s Cloud
Functions [97]

• Software as a Service (SaaS): Provisioning of a specific service to users directly.

9

2 Kubernetes as a Cloud Environment

Clients only have access to the service using a web or native client to access or
modify their data. E.g. productivity applications like Microsoft’s Office 365[142] or
Google G Suite[101]

The service models also indicates which security responsibilities are handled by the
CSP and which belong to the user of the cloud service.[25, 5] See fig. 2-1.

Figure 2-1: General overview of the distribution of security responsibilities between
cloud provider and consumer. From [25]

As a consumer, it is important to be aware which layers are in your responsibility and
which are handled by the cloud provider. Whether the consumer or the cloud provider is
responsible for a certain security measure differs between the different service offerings
and cloud providers. As a consumer of a cloud service, it is important to be always
aware which areas of security are your responsibility. [25]

As long as the cloud user is aware, which areas they are responsible for securing,
this separation of responsibilities can have a positive impact on the system’s security
stance. CSP’s can often perform better at securing the underlying security fields as
they operate on a large scale. This difference is apparent in most layers, but easiest to
visualize in the physical infrastructure security layer. Large cloud providers often have a
multi-layered perimeter security system with biometrical access controls for their data
centers.[49, 100] Such security measures are often too expensive for smaller companies

10

2 Kubernetes as a Cloud Environment

to implement them on their own. When these companies migrate their applications to a
cloud provider, they can run their systems with the same high physical access security
as every other system in the cloud provider.[7]

2.2 What is Kubernetes?

2.2.1 History of Kubernetes

Kubernetes is a container orchestration system originally developed by Google and
was released as an open-source project in 2014. Kubernetes built upon learnings from
Googles internal container orchestration systems Borg and Omega, which are used
internally to schedule hundreds of thousands of containerized workloads on tens of
thousands of machines.[9]- [10]

In 2015 the project was transferred from a primary leadership from Google to the Cloud
Native Computing Foundation (CNCF)[74], a newly formed subsidiary organization of
the Linux Foundation.[8] In 2018 Kubernetes was the first project inside the CNCF
organization to be promoted to the graduated level. This level is supposed to indicate
that Kubernetes is considered stable and mature enough to be a viable option across
all industries.[17]

Since its public release, Kubernetes has been adopted by a large number of companies.
The adoption of an open-source project is hard to quantify in actual numbers, as there
is no central entity able to track which companies have adopted the project. Some
indication of the adoption is the large number of companies which have joined the CNCF
organization, which is largely defined by the Kubernetes project and the ecosystem
surrounding it.[78]
Another indication of the project’s success is the large number of public cloud vendors
providing managed Kubernetes offerings, in which most internal cluster components are
handled by the cloud provider. A overview of the hosted offerings can be found on the
CNCF landscape[77] and includes all of the three big public cloud providers AWS with
Amazon Elastic Kubernetes Service (EKS)[51], Azure with Azure Kubernetes Service
(AKS)[63] and GCP with Google Kubernetes Engine (GKE)[102].

11

2 Kubernetes as a Cloud Environment

2.2.2 How Kubernetes is Used

Kubernetes allows users to deploy and manage containerized workloads to a cluster of
machines. Containers are, compared to virtual machines, a more light weight way to
package and run an isolated workload. This is achieved by using features of the Linux
kernel to isolated processes from each other in their own namespace.1

One of the core principles of Kubernetes is its declarative API. Users don’t tell Ku-
bernetes what to do, but how they want the cluster to look like. Kubernetes will then
compare this declaration with the current state of the cluster and make the necessary
changes to the cluster to meet the definition of the user. How this principle is realized in
Kubernetes will be further discussed in section 2.3. [23, Chapter 1]

These declarations in Kubernetes are called Resources. For the remainder of this work
the capitalized spelling of Resources will refer to Kubernetes Resources rather than the
general term. Specific Kubernetes Resources mentioned in the remainder of this work
will also be capitalized.

Kubernetes offers several different Resources for users to define different aspects of
the deployment of their applications. The following paragraphs will describe three types
of Resources required to deploy and expose an application:

Deployments in Kubernetes are a way to deploy stateless applications. Stateless means
that the applications don’t require persistent write access to a disk, like a database
would need to.[23] An example of a Kubernetes Deployment described in YAML can
be found in listing 2.1. This example is a Deployment for the Open Web Application
Security Project (OWASP) Juice Shop[149] application, which will be later used in this
work as an evaluation case for the automatic security assessment. This manifest tells
Kubernetes that three replicas of the application should be run at all times. For each of
these replicas, Kubernetes will start a separate Pod. A Pod is a collection of one or more
containers that make up the application. In this example the Pod will only contain one
image, which is using the official container image of the Juice Shop application[85].

apiVersion: apps/v1
kind: Deployment
metadata:

1Windows containers also exists, which behave differently and are not directly compatible with Linux
based containers.[89] The term containers when used in this work will refer to Linux based containers.

12

2 Kubernetes as a Cloud Environment

name: owasp−juice−shop
namespace: juice−shop

spec:
selector:

matchLabels:
app: juice−shop

replicas: 3
template:

metadata:
labels:

app: juice−shop
spec:

containers:
− name: juice−shop

image: docker.io/bkimminich/juice−shop:v11.1.2
ports:

− name: http
containerPort: 3000

Listing 2.1: Kubernetes Deployment of the OWASP Juice Shop Application

Services let users address all replicas of the application under a single load-balanced IP
address. Most clusters also allow applications to use DNS to lookup the IP addresses
of Services in the Cluster which enables automatic service discovery in the clusters.

Ingress Resources let users define how incoming HTTP traffic should be handled.
This lets users define rules like all HTTP traffic for juice-shop.example.com should be
routed to the Juice Shop Service.

2.2.3 Classification of Kubernetes in the Cloud Landscape

This section will discuss how Kubernetes fits into the NIST SP 800-145 definition of
cloud computing[4]. As Kubernetes is used in this work, as an example of a cloud
computing environment, it is important to highlight which areas of cloud computing are
covered by this sole focus on Kubernetes and which are left out.

13

2 Kubernetes as a Cloud Environment

Essential Characteristics

Kubernetes meets or can meet all of the five essential characteristics of the NIST SP
800-145. Whether or not a characteristic is met can depend both on how the cluster is
deployed and how the cluster is used. Listed below is a short overview of how these
characteristics apply to Kubernetes.

• On-demand self-service: Kubernetes enables users manage their own services
by themselves.[23, Chapter 1]

• Broad network access: Kubernetes and its API is available to all authenticated
users over the network. See API Server in section 2.3

• Resource pooling: The compute resources in the cluster are shared by all users
in the cluster. The Scheduler will automatically assign new workloads (Pods) to an
available node. See Scheduler in section 2.3.

• Rapid elasticity: Services running on Kubernetes can be scaled to meet de-
mand.[122] By default this scaling is restricted by the total size of the cluster. When
using a managed Kubernetes service or running the Kubernetes cluster on an
IaaS service it is also possible to scale the cluster size automatically based on its
utilization.[118]

• Measured service: The resource usage of a specific tenant (called namespace)
can be tracked via the metrics-server [136] and restricted via the ResourceQuotas
Resource in Kubernetes.[131]

Deployment Models

Kubernetes is extremely flexible when it comes to where it can run. This lets Kubernetes
run in all four of the defined deployment models of the NIST SP 800-145. This flexibility of
Kubernetes is often used by public cloud providers to extend their managed Kubernetes
offerings to run in on-premise environments, essentially providing a hybrid cloud as a
service[62, 50, 96].

14

2 Kubernetes as a Cloud Environment

Service Models

When it comes to the classification of Kubernetes into one of the service models of the
NIST SP 800-145 definition of cloud computing, Kubernetes can be best described using
the PaaS service model. Not all aspects of the PaaS definition fit perfectly thought.[133]
Kubernetes is in a lot of aspects a lower-level abstraction than the most common PaaS
platforms like Heroku[108], Vercel[169], Google App Engine[54] or similar services. One

Traditional Deployment
(Bare Metal)

Virtualized Deployment
(IaaS)

Typial PaaS Deployment
(PaaS w/ managed Runtime)

Kubernetes
(PaaS w/ custom Runtime)

Hardware Hardware Hardware Hardware

Operating System Operating System Operating System Operating System

Hypervisor Container Runtime Isolation Layer
(Container / VM / Other)

App

App

AppOperating System Operating System

Application Runtime

Application Runtime

Application Runtime

Application Runtime

App App

App

App

App App App

Virtual Machine Container DeploymentVirtual Machine Container Deployment

Figure 2-2: Overview of virtualization layers in different cloud systems. Blue back-
grounds indicate layers which are usually in the responsibility of the user.
Based on [133]

of the aspects which show this lower level is that PaaS services are usually restrictive
in which programming languages can be used for applications running on top of them,
as the language runtime is managed by the PaaS platform. Kubernetes doesn’t have
this restriction, as the deployment target for Kubernetes is containers. This allows
Kubernetes to run a wide variety of applications, from decade-old Fortran code to code
written in modern programming languages.[109] This is possible because the container
image contains all dependencies, including the language runtime and system libraries
inside the image. A visual comparison of different software stacks between IaaS and
different PaaS stacks can be found in fig. 2-2.

The Kubernetes ecosystem contains multiple projects to enable a more PaaS like
experience on top of Kubernetes, including managed application runtimes. Some of
these tools are:

• Cloud Foundry which aims to provide a PaaS like platform running on Kuber-
netes.[72]

• Cloud Native Buildpack which takes out the application runtime management
out of the container image build process[73]

15

2 Kubernetes as a Cloud Environment

• OpenFaaS provides a Function as a Service (FaaS) / serverless platform like
AWS Lambda[58], Azure Functions[61] or Google Cloud Function[97] on top of
Kubernetes.[146]

Another Aspect in which Kubernetes differs from other PaaS offerings is, that Kubernetes
provides several escape-hatches to interact with the underlying nodes directly

One of these escape hatches is the ability to run privileged containers, these are
containers that have nearly the same capabilities as the host’s OS, thus breaking the
container isolation. This can be used to configure the host’s OS to better match the
needs of the applications running on them. Privileged containers can also pose a big
security risk in clusters, the use of them can be prohibited. The security aspect of
Kubernetes will be further discussed in chapter 3. [42, 21]

Another one of these types of utilities are DaemonSets, which lets users run one Pods
(container) on every node of the cluster. These are often used to provide cluster level
utilities like the collection of log, metric, or tracing data from applications running inside
the cluster. [23]

2.3 Anatomy of a Kubernetes Cluster

Kubernetes clusters are comprised of one or multiple nodes. The nodes are machines
on which the applications of the cluster are run. Additionally, to the actual application
for which the cluster is intended for, Kubernetes also needs to run a number of its
own components that are required to keep the cluster running and provide additional
services to the applications.

The Kubernetes components come in two classes:

• Node Components: Components required on every node.[16, 124]

• Control Plane Components: Components that are required at least once per
cluster. If Kubernetes is provided by a cloud provider as a service these compo-
nents are often fully managed by the cloud provider and run outside of the cluster
and thus inaccessible to the user. When self-hosting a Kubernetes cluster, it is gen-

16

2 Kubernetes as a Cloud Environment

erally recommended to run these on dedicated nodes, so that their performance
cannot be degraded by user-controlled workloads. [24, 16, 124]

The section below gives a brief overview of all required components in a cluster which
are required for its operation. As these components can be found in every cluster (with
some exceptions), these components are also interesting from a security standpoint as
a security vulnerability in these components will affect all Kubernetes clusters. A visual
overview of the components can be found in fig. 2-3.

API Server

Kubernetes Components

Application Components

Network Connection

Legend

kubelet

kubelet

kube-proxy

kube-proxy

App #1

App #3

App #2

Kubernetes Control Plane

Worker Node

Worker Node

Controller Manager Scheduler

etcd

kubectl

Figure 2-3: Overview of components in a Kubernetes cluster. Based on [26, 124]

etcd (Control Plane Component)

etcd is an open source key-value database originally created by CoreOS, which like
Kubernetes is now managed by the CNCF. It is used to store all Resources (see
section 2.2.2) in the Kubernetes cluster.[16]

etcd can be replaced by other databases. E.g. the lightweight Kubernetes (re) distribu-
tion k3s uses SQLite as a replacement for etcd.[111] This work will assume that clusters
use etcd as this is the default in Kubernetes.

API Server (Control Plane Component)

The API Server is the component in Kubernetes which users (developers and operators)
and also Continious Integration (CI) systems deploying applications interact with directly.
It provides an HTTP API to interact with the Resources stored in etcd. It is the only
component in Kubernetes which has direct access to etcd. This makes the API Server

17

2 Kubernetes as a Cloud Environment

a critical component, as all other components in Kubernetes which need access to the
Resources saved in etcd need to communicate with the API Server. [16]

The API Server is also responsible to handle authentication and authorization if these
are enabled in the cluster configuration.[16]

Scheduler (Control Plane Component)

The Scheduler is responsible to assign newly created Pods to specific worker nodes.
Pods in Kubernetes can have a number of restrictions that indicate which types of nodes
are unsuitable for them (e.g. the Pod can only run on nodes with a arm CPU architecture).
Pods can also have optional requirements that the scheduler tries to enforce as much
as possible. [16]

Controller Manager (Control Plane Component)

The Controller Manager is a set of Controllers compiled together into one service /
one binary. Each of these Controllers are running a reconciliation/control loop which
compares the specification of a Resource from the Kubernetes API Server with the
state of the cluster and/or the external world and updates them if they don’t match the
specification. A diagram of the reconciliation loop can be found in fig. 2-4. [26, 16]

An example of a Controller is the Deployment Controller which manages Deployment
Resources described in section 2.2.2. The Deployment Controller is responsible for
starting enough Pods to match the number of replicas specified in the Deployment
specification.

Kubernetes Resource External WorldController
Updates Status

Get Notified

Update Spec

Make World
Match Desired State

Figure 2-4: Overview of the Kubernetes Reconciliation / Control Loop. Based on [26]

Most Kubernetes clusters also contain other Controllers which are not directly shipped
with Kubernetes. Most CSPs include a Cloud Controller Manager which reconciles
Kubernetes Resource which directly correspond to objects in the cloud provider like
LoadBalancers or PersistentVolumes. The Cloud Controller Manager will then call

18

2 Kubernetes as a Cloud Environment

the API of the CSP to create or update these cluster external resources to match the
specification of the Kubernetes Resource. [119, 23]

kubelet (Node Component)

The kubelet runs on all Kubernetes nodes and is responsible to run and manage the
Pods assigned to its Node by the Scheduler.

The kubelet itself delegates the execution of the container to a Container Runtime
Interface (CRI), which is then responsible for managing the underlying system calls to
create the container. This lets users switch out their container runtime without having to
recompile the kubelet. The most popular options are Docker [84] and containerd [80].[29]
This separation has also enabled further experimentation to provide a stronger isolation
between the containers using tools like Firecracker [93], gVisor [104] and KataContain-
ers[112].[92, 91] The security impact of these additional isolation layers is highlighted in
chapter 3.

Part of the managing responsibility is to execute the health-checks defined for the Pod,
to check if the Pod is still working as intended. Kubernetes offers different options to
check the health of a Pod, e.g. by sending an HTTP GET request to a specified endpoint
and checking the status code of the HTTP response. [16, 23]

The kubelet is also responsible to configure the Container Networking Interface (CNI),
which ensures that Pods can send packages to other Pods, even when they are phys-
ically located on different nodes.2 Similar to the CRI the CNI is pluggable, which lets
users swap out a CNI implantation for a different one. One common CNI implementation
is Calico[152]. [127]

kube-proxy (Node Component)

The kube-proxy is responsible to manage Service Resources in Kubernetes which let
user address multiple Pods under one address. By default kube-proxy works by setting
rules for iptables on the host operating system. [16]

kube-proxy is often run as a privileged container inside a DaemonSet, see section 2.2.3,
in the cluster to ensure that is running on every node.

2The network access of a Pod can be restricted using NetworkPolicies[128], to prevent unwanted
communication between Pods. See chapter 3.

19

2 Kubernetes as a Cloud Environment

Optional Services

Most clusters also include additional services to full-fill certain additional functions,
like CoreDNS[81] to provide service discoverability and the metrics-server[136] to
monitor and enforce compute resource usage. These two services are included in most
Kubernetes distributions, but not necessary to run the cluster.

20

3 Security in Kubernetes Applications

This chapter will highlight vulnerabilities that directly influence the security of applications
running on Kubernetes. The vulnerabilities listed in this chapter were aggregated from
multiple types of sources, including books, project documentation, conference talks,
and blog posts. As some of these sources are lacking in their use of scientific methods,
multiple sources were consulted at all times to ensure a reliable source of information.

The vulnerabilities listed in this chapter will then be later used to analyze how their
detection can be automatically assessed in chapter 4.

3.1 Security Aspects of Kubernetes Components

Kubernetes itself has to be kept secure to ensure that the applications running on top of
it are also secure. This section described a set of security aspects of the Kubernetes
internal cluster components described in section 2.3. The security aspects of these
components are critical as they are part of every Kubernetes cluster and a single
compromise of one of the components often leads to a complete compromise of the
entire cluster. A high-level overview of the attack points can be found in fig. 3-1.

This work assumes that the Kubernetes cluster is deployed in a PaaS like manner
where both the physical security, virtualized infrastructure security, network security,
and operating system security are handled by the CSP and are therefore out of scope
for this work. The shared responsibility middleware, see fig. 2-1, in this case, is
Kubernetes and its Components. This shared responsibility introduces a problem as
the exact responsibility distribution differs between different CSPs. How the individual
Kubernetes offerings of the CSPs have to be configured can be typically found in their
documentation.[95, 161, 160] This chapter highlights some of the types of Kubernetes

21

3 Security in Kubernetes Applications

Figure 3-1: General overview of Attack Vectors in Kubernetes clusters. From [21]

specific vulnerabilities that are often, at least partly, in the responsibility of the user,
depending on the CSP.

Missing Authentication / Authorization

Multiple Kubernetes internal components expose an API which lets users or other
components of the cluster communicate with them. The only components which should
be accessed directly by a user / or tool are the API Server, see section 2.3, which uses
a Role-based Access Control (RBAC) model to manage and restrict access to individual
Resources. RBAC is turned on by default since Kubernetes Release 1.6.0, which was
released in march 2017.[107, 13] Even though it is enabled by default it can be turned

22

3 Security in Kubernetes Applications

off by the cluster administrators. Additionally to authorization (handled by RBAC) it
should be ensured that the cluster uses a secure authentication strategy e.g. using
OpenID Connect or client certificates.[21] [39, 16]

Outdated Clusters

Kubernetes regularly has vulnerabilities discovered in its codebase. The Kubernetes
project has a publicly documented process[125] how disclosed vulnerabilities are han-
dled and addressed quickly to push fixes for the disclosed vulnerabilities out as soon
as possible. The fixes are generally released for the last three minor releases of Ku-
bernetes.[126] Kubernetes uses a quarterly release schedule which means that minor
releases are supported for nine months. Commercial providers might back-port security
fixes to older Kubernetes versions in their Kubernetes offerings. [125]

A list of all reported and confirmed vulnerabilities in Kubernetes can be found in the
Kubernetes issue tracker on GitHub.[135]

Exposed Development Tools

The Kubernetes ecosystem contains a large set of tools used by developers and
operators to perform regular jobs like deploying and inspecting applications on top of
Kubernetes. An overview of this ecosystem of tools and product can be found on the
Cloud Native Interactive Landscape of the CNCF.[76] Depending on the tool and its
configuration they can itself pose a threat to the safety of the cluster.

One commonly used tool in the Kubernetes Ecosystem is the Kubernetes Dashboard,
which gives users a web user interface to view and manage their Resources in Kuber-
netes. It’s generally recommended to not expose the Dashboard to the internet, but to
access it via the proxy functionality of the Kubernetes command-line client kubectl.[21,
132]

There have been several cases where the Kubernetes Dashboard has been deployed
incorrectly so that it was publicly available without any authentication. One infamous
example of this was the cryptocurrency mining attack[59] against Tesla. Tesla had the
Kubernetes Dashboard deployed in a publicly accessible way, without any authentication.

23

3 Security in Kubernetes Applications

Through the Dashboard, attackers had gained access to the cluster and deployed
cryptocurrency miners. The attackers were also able to breach a Tesla AWS account,
as the cluster contained access keys for the AWS account. [18, 15, 19, 46]

3.2 Security Aspects of Application running inside

Kubernetes Clusters

Aside from Kubernetes specific security flaws described in the previous section, Ap-
plications running on Kubernetes are also potentially vulnerable to more traditional
attack vectors like SQLi and Remote Code Execution (RCE) vectors. These vectors
are, compared to the Kubernetes specific vector better understood in the scientific
community. A popular publication containing ten of the, in the eyes of the authors, the
most important vulnerabilities for web/HTTP based applications is the OWASP Top Ten
2017 [12]. The OWASP organization and their community publishes other guides/reports
like the Web Security Testing Guide[36] which explains how these and other types of
vulnerabilities can be tested. Or the Cheat Sheet Series, a series of guides on how dif-
ferent vulnerabilities can be mitigated.[33] As these vulnerabilities are better understood
the section below will focus on the types of vulnerabilities that can cause additional
harm to Kubernetes Applications, as they can potentially be escalated (by the privilege
escalation vulnerabilities described in section 3.3) to compromise other applications or
the entire cluster.

Remote Code Execution (RCE)

RCE describes a class of vulnerabilities that enable an attacker to run arbitrary code
on a system. RCEs are often caused by other vulnerabilities these are listed below as
the potential attack vectors. [12] RCEs are hard to prevent, as they can be caused by
a wide variety of different underlying vulnerabilities. Kubernetes as a platform can do
very little to prevent RCE vulnerabilities in the applications, but can limit the impact of
individual RCEs by ensuring that a compromised container in the cluster does not lead
to the entire cluster being compromised. How these types of privilege escalations can
be prevented in Kubernetes will be discussed in section 3.3.[21, 46]

24

3 Security in Kubernetes Applications

Components with Known Vulnerabilities

In contrast to other PaaS like environments containerized systems bring their own
language runtime and other Operating System (OS) level dependencies. In most PaaS
systems the security of the tools can be centrally enforced as the versions available are
centrally managed for the cloud environment. Containers have more flexibility there,
which also comes at a security risk as each container image has to be updated to apply
patches for their language runtimes and other OS level dependencies.

One general characteristic of container which can help to mitigate this risk is that the
software contained in a container image is generally immutable. Immutability in this
context means that all containers started from the same container image are using the
exact same software. It is possible to update the software in a running container, but
this is generally considered a bad practice.[42] Immutability can be enforced using the
readOnlyRootFilesystem property in Kubernetes.[120] This allows scanning tools to
analyze the container images and provide reliable information about the security stance
of the software components contained in the container. [42]

3.3 Privilege Escalation in Kubernetes Clusters

This section contains types of vulnerabilities and missing protections that enable attack-
ers to extend their privileges. When an attacker compromises a Pod in a Kubernetes
cluster, ideally the security boundaries are strong enough so that the attacker can not
escalate the privileges to take over other application in the same namespace, node or
cluster.[21, 46] A graphical overview of the different types of security boundaries in a
Kubernetes cluster can be found in fig. 3-2.

The vulnerabilities in this section are especially relevant when the cluster is used by
multiple tenants. Who is sharing a cluster with whom should be a conscious decision
when adopting Kubernetes, as the isolation layer isn’t bulletproof and requires active
configuration to get right.[24]

25

3 Security in Kubernetes Applications

Figure 3-2: Kubernetes Security Boundaries. From [21]

Container Isolation

One way to escalate the privileges of a containerized workload is to break the container
isolation layer. These attacks have a similar impact as hypervisor breaches do in VM
based infrastructure, only that container isolation is generally easier to break than the
isolation of a VM.[42] The isolation is especially weak when the containerized processes
posses a wide range of capabilities in Linux, as each of these poses as a new vector
which can potentially be used to break the container isolation.[156, 42, 35, 39]

Two main miss-configurations can lead to these over granted Linux capabilities:

• Containers started using the privileged flag, which gives the container all Linux
capabilities.[156, 42, 35]

• Containers using a root user (default when using Docker as the CRI)[42]. root
user have access to most Linux capabilities, but less than privileged contain-
ers.[156, 42, 35]

Besides over granted Linux privileges, other potential ways exist in which the container
isolation can be broken, e.g. by using HostPath mounts. HostPath mounts can be used

26

3 Security in Kubernetes Applications

to make directories from the host available from the host to the container. Depending
on the mounted directory HostPath mounts can be used to break the container isolation.
[21, 79]

Kubernetes allows cluster administrators to define rules and policies which forbid cluster
users from using the above mentioned features by specifying PodSecurityPolicies.[129,
21, 35, 129]

Depending on the CRI used in the cluster, the container isolation can also be improved
by adding an additional isolation layer between the host and the container. These
tools either introduce a light-weight virtual machine (e.g. Firecracker[93] or katacon-
tainers[112]) or a user-space reimplementation of kernel features(e.g. gVisor[104]).
[21]

Similarly to reducing the number of Linux capabilities available to the container, it is
considered to further minimize the attack surface for an attacker by minimizing the base
image to only contain the tools required to run the application. Many commonly used
base images contain several tools which are helpful for debugging, e.g. shells like bash.
These tools are also helpful to attackers when they have compromised a container,
e.g. via a RCE vulnerability. [42, 79] If the developers are using a language which can
produce statically linked dependencies, e.g. C, C++, Go[167], the container images can
be build using the scratch base image, completely empty base image. If the language
requires a runtime or cannot statically compile, users can use a base image like the
Distroless[47] base container images from Google, which contain the language runtime
and the bare minimum of libraries required for them to run.[47]

Using Authenticated Service Accounts

Kubernetes uses a Resource called Service Accounts for the authentication of workloads
against the Kubernetes API Server. As a utility Kubernetes can mount an access token
for a Service Account into the Pod, so that the workload in the Pod can access the
API Server with its Service Account. All namespaces in Kubernetes have a default
Service Account, which is also literally called default. The Service Account token for
this default Service Account gets automatically mounted into every container, unless the
specification of the Pod has the automountServiceAccountToken property set to false,
or the default Service Account has been modified to disable this behavior.[121]

27

3 Security in Kubernetes Applications

In properly configured clusters and namespaces with RBAC enabled, this only has
a limited security impact, as the default Service Account doesn’t have any rights. In
clusters without RBAC enabled, the Service Account could perform any operation, as
in these clusters it is enough to be authenticated with no authorization checks being
performed.

Another case where this can be problematic is when the default Service Account of the
namespace has been given additional roles to have access to the Kubernetes API. This
can happen when the Service Account is used by applications and the administrators
grant privileges to the default Service Account instead of creating a new one for the
application.[21, 39]

28

4 Automatic Security Verification in
Kubernetes Prototype

In this chapter the general goals for the prototype are described, which it needs to fulfill
to be able to properly answer the research question of this work. The goals stated
are compared to open-source projects in this field which aim to solve similar problems.
Finally, the architecture of the prototype and its mode of operation are introduced,
including the scanning tools used to assess the security of the individual Resources.

4.1 Prototype Goals

The Goal of the prototype is to automatically detect security aspects of applications
running inside Kubernetes clusters by using the Kubernetes API to automatically dis-
cover all Resources which are relevant to the application’s security. This concept of the
automatic detection of security relevant Resources will be referred to as auto-discovery
in the remainder of this work.

The actual assessment of the Resources is not handled by the prototype itself but
delegated to specialized open-source security testing tools. The tools are orchestrated
by the OWASP secureCodeBox [159], an open-source orchestration engine for security
testing tools, see section 4.5. This enables the prototype to only handle the auto-
discovery aspects and lets it delegate the assessment to the secureCodeBox and the
integrated security testing tools.

The prototype will primarily focus on security aspects on web/HTTP based applications
running on Kubernetes, which is arguably Kubernetes’ primary focus. Kubernetes
also supports non web/HTTP based applications by exposing them via NodePort or

29

4 Automatic Security Verification in Kubernetes Prototype

LoadBalancer1 Services[23], but these aren’t as deeply integrated as HTTP based
application via the Ingress Resource, see section 4.6.

Application specific security aspects, as described in section 3.2, will be covered both on
their internal and their external attack surface. The term external attack surface is used
in this work to describe any Resource (e.g. Ingress) which can be directly addressed
by traffic from outside the cluster. The internal attack surface refers to Resources (e.g.
ClusterIP Service) which can only be addressed by workloads from inside the cluster.
The benefits of scanning both internal and external attack surface are further discussed
in section 4.6.

The auto-discovery prototype aims to track the applications running on the Kubernetes
cluster automatically and as immediately as possible, to ensure that the scans are
always up to date. E.g. when a new application gets deployed to the cluster the auto-
discovery should detect this application automatically and directly with minimal time
delay. This behavior is further described on a conceptual level in section 4.2 and on a
more technical level in section 4.4.

While this prototype is only focussed on Kubernetes, the same concept can be applied to
other (private, public, or hybrid) cloud environments. The same auto-discovery aspects
can be used in these environments by using the API of the environment to automatically
list all Resources of a specific type.

4.2 Application Lifecycle Tracking

The auto-discovery in the prototype isn’t a one time process. Instead of using the API
to once list all applications and then dispatching security scans, it listens for relevant
events in the Kubernetes API to react directly to new events. These can generally be
grouped into two categories:

• New Resources: When a new Resource is deployed to Kubernetes the auto-
discovery prototype should automatically dispatch a scan to assess the security of
the Resource.

1If LoadBalancers are supported in a cluster depend on the support of the Cloud Controller Manager
installed in the cluster and the underlying CSP

30

4 Automatic Security Verification in Kubernetes Prototype

• Updated Resources: Updated Resources should be compared to the existing
scans in the cluster and ensure that the existing scans still apply to the Resource.
If the application has changed in a significant way (e.g the application has changed
the container image) the scans should be repeated for the new Resource version.

Tracking the events, rather than listing all Resources on a specific schedule, gives the
auto-discovery the ability to directly react to updates and not have to rely on a scan
schedule to repeat the scans.

How the lifecycle tracking is handled on a technical level in the prototype is described in
section 4.4.

4.2.1 Comparison to Continuous Integration Approaches

The most common approach to implement security automation for software projects is to
add scanning tools into the CI pipelines of the projects. This ensures that the scanners
are run once for every change made to the software.[11, 27]

The auto-discovery prototype doesn’t integrate into CI pipelines as it only looks at the
runtime environment. The lifecycle is inferred by the events regarding the applications
in the cluster.

A comparison between these two approaches to automatically assess application
security aspects is out of scope for this work as its focus is the assessment of application
using the information of the runtime environment.

4.3 Prior Art

Some products and projects exist in this space which have at least in part similar goals.
They come in two varieties, commercial products provided by cloud providers or security
vendors or open-source or open-core2 tools developed by organizations or individuals.

2Open-core tools in this work refer to open-source tools with closed-source extensions or integrations
provided by the company maintaining the project.

31

4 Automatic Security Verification in Kubernetes Prototype

All of the three major cloud providers offer products in this space including AWS In-
spector[57], Google Security Command Center[103] and the Azure Security Center[64].
These products provide several automatic assessments for specific products in their
portfolio. Most of these are limited in their ability to auto-discover cloud resources, and
the lifecycle tracking goals of the prototype listed in section 4.2, as these tools focus on
their specific cloud platform and are closed source these will not be further investigated
in this comparison of prior art.

There exist some tools by independent security vendors that aim to provide a unified
security platform across the different cloud providers. Most of these tools are closed-
source commercial products which make it hard to assess their functionality. Other
than the commercial tools there also exists some open-source / open-core projects.
One notable tool is the CloudSploit [75] project maintained by the security vendor Aqua
Security[55]. CloudSploit performs configuration scans of cloud projects/accounts for
its users, by using the API of the CSP to list all cloud resources of the project/account
.[75]

Listed below is a list of three Kubernetes specific open-source / open-core tools in this
field. This entire field is relatively new, especially the Kubernetes specific tools. Two
of the three projects listed below were only released during the duration of this work.
As such, they had only a limited influence on the prototype, as most of the work was
already completed at the time of their release.

• Starboard (open-source / open-core): Starboard is a Kubernetes specific secu-
rity tool by the security vendor Aqua Security [55].[43, 164] Starboard performs
container image vulnerably scanning, using the Trivy [168] scanner, in the Kuber-
netes cluster, see section 4.7, and Kubernetes specific scans using kube-hunter
and kube-bench, see section 4.8. Starboard at the moment doesn’t perform auto-
discovery, the scans need to be started manually. An auto-discovery like feature is
included in the roadmap of the project.[165] [164]

• DAST Operator (open-source): Dynamic Application Security Testing (DAST)
Operator by the cloud vendor Banzai Cloud [65] is a project to automate dynamic
security scans using OWASP ZAP[151].[22, 82] The DAST Operator help to deploy
ZAP and automatically dispatching ZAP Scans for both Kubernetes Services
and Ingress Resources based on the annotations set on the Resources. The
DAST Operator is the only of the three mentioned projects to be released before
the prototype was developed. This project behaves similarly to the automatic

32

4 Automatic Security Verification in Kubernetes Prototype

assessments of HTTP Service and Ingress Resources of the prototype, see
section 4.6. The auto-discovery implementation is based on the same underlying
technology to detect Resources in the Kubernetes API(kubebuilder [115]), but
is lacking in the lifecycle detection of Services and Ingress Resources, as the
scans are only run once, without automatic re-scans on changes to the underlying
applications, see section 4.2. [82]

• Kubei (open-source): Kubei is Kubernetes specific open-source project to run
container image vulnerability scans using the Clair [71] image vulnerability scanner
by the security vendor Portshift.[45, 116] Kubei scans are not completely automated
but require a manual button click on their web UI to dispatch a scan. Kubei will
then dispatch scans for all container images used in all namespaces of the cluster3.
[116]

4.4 Architecture of the Prototype

One of the primary research focus of this work is to investigate how the Kubernetes API
can be used to discover and then automatically assess security aspects of applications
which run on the Kubernetes cluster.

Research Question: How can the information from the Kubernetes API be used to
automatically assess security aspects of applications running inside a Kubernetes
cluster?

To investigate the possibilities of Kubernetes and its API this work has documented
what components make up a Kubernetes cluster and how they work in chapter 2.
One of the most important Kubernetes components highlighted in chapter 2 was the
Controller Manager, which is the component in Kubernetes which implements most of
the features in Kubernetes. One interesting aspect of the Controller Manager is, that it
only communicates with the Kubernetes API Server. The API Server is also available to
users and workloads of the cluster, e.g. API access via auto mounted Service Account
Tokens, see section 3.3. This gives users and workloads the possibility to add or
extend Kubernetes behavior by adding custom controllers. As this is using the same

3It can be provided with a deny list of namespaces to ignore, which default to a list of system-level
namespaces.

33

4 Automatic Security Verification in Kubernetes Prototype

architecture and API as the API Server this lets these custom controllers integrate very
deeply with Kubernetes. Controllers are described in the relevant Kubernetes focused
literature as the recommended way to extend the behavior of Kubernetes Resources. In
the case of the auto-discovery prototype, the added behavior is the security assessment
of the Resources. [26, 28]

Kubernetes Resource secureCodeBoxAuto-Discovery
Controller

Updates Status

Get Notified

Update Spec

Create or Update
Scan for Resource

Figure 4-1: Control / reconciliation loop of the auto-discovery controller.

This architecture of the auto-discovery being build as a custom Kubernetes controller
lets the auto-discovery implement all goals described in section 4.1. As a Kubernetes
controller, the auto-discovery subscribes to all events related to the Resources consid-
ered relevant for the security of an application, e.g. Ingress Resources. For every event
(Resource creation, update or delete) the auto-discovery controller decides if a new
scan should be dispatched, or if the Resource is already covered by an existing Scan.
As the controller is using an event stream4, these events are processed directly as they
happen. As these events are dispatched for all updates to a Resource, including its
creation and deletion, this enabled the auto-discovery to track the complete lifecycle of
the Resources directly with a close to zero delay, see application lifecycle tracking goals
in section 4.2. An adjusted diagram of the reconciliation loop for the auto-discovery
prototype can be found in fig. 4-2.

The auto-discovery service for Kubernetes is build using the Kubebuilder project[115],
which allows users to write reconciler functions, following the reconciliation loop pattern
from the Kubernetes Controller Manager. Kubebuilder itself is part of the larger Kuber-
netes project and contains several utilities and helper to write Controllers in the Go[167]
programming language.

4Using a watch operation in the Kubernetes API.[117, 26]

34

4 Automatic Security Verification in Kubernetes Prototype

4.5 SecureCodeBox Security Test Orchestration

The complete architecture of the prototype consists of two parts. The auto-discovery
controller which is responsible for discovering security relevant Resources and creating
scans to assess their security aspects. The execution of these scans is not handled by
the auto-discovery, but by the open-source security test orchestration system OWASP
secureCodeBox.[159] The version of the secureCodeBox used is an alpha version the
second major release of the secureCodeBox.[158] This alpha version is build based on
Kubernetes, using Kubernetes Custom Resource Definitions (CRDs)[26]to model its
API. CRDs allow to add new Resource Types to the Kubernetes API which can then
be used by custom controllers to add additional behavior to Kubernetes. This is used
by the secureCodeBox to allow Kubernetes users to directly schedule and run security
scanning tools on their cluster, with the execution and orchestration of the scans being
controlled by the secureCodeBox. This allows the auto-discovery service to start scans
by creating the corresponding Resource in the Kubernetes API.

apiVersion: "execution.experimental.securecodebox.io/v1"
kind: Scan
metadata:

name: "zap-scan-juiceshop"
spec:

scanType: "zap-baseline"
parameters:

− "-t"

− "http://juice-shop.example.com:3000"

Listing 4.1: Example secureCodeBox v2 Scan Definition

To provide a simpler interface for the auto-discovery to scan the discovered services,
a new category of CRDs in the secureCodeBox were created. The default Resources
require to describe the exact scan which should be run, including its configuration
via command-line flags. An example of the CRD of a scan in the secureCodeBox
can be found in listing 4.1. This is not optimal, as the Kubernetes auto-discovery is
meant to be one of multiple auto-discovery services for specific cloud environments (e.g.
AWS[52], Azure[141], OpenStack[147]) and each of these would have to include this
technical configuration for each scanner. To avoid this duplication of scan configuration
for every type of auto-discovery, a new target CRD was introduced, which allows the
auto-discovery services, in this case, the Kubernetes auto-discovery service, to describe
the target which should be scanned, without describing exactly how it should be scanned.

35

4 Automatic Security Verification in Kubernetes Prototype

The secureCodeBox is then responsible to start the scans which fit the definition of the
targets. For this work two target types were introduced:

• Hosts: A Host target describes a network addressable machine, with one ore
multiple services / ports. These ports can be of different types, though this work
only uses auto-discovery for HTTP and HTTPS type ports. An example of a Host
target can be found in listing 4.2.

• ContainerImages: A ContainerImage target contains the image reference URL of
a container registry from which the image can be pulled. Optionally the Container-
Image target can also contain a reference to a ImagePullSecret in Kubernetes if
the registry is not public and requires authentication.

apiVersion: targets.experimental.securecodebox.io/v1
kind: Host
metadata:

name: juice−shop.example.com
spec:

hostname: juice−shop.example.com
ports:

− type: ssh
port: 22

− type: http
port: 3000

Listing 4.2: Example secureCodeBox v2 Target Definition

The areas of separation between the Kubernetes auto-discovery and the secureCode-
Box is visualized in fig. 4-2.

Another aspect in which the secureCodeBox running directly on Kubernetes is support-
ing this prototype, is the area of transparency of the scan results and the scan process.
An autonomous team using one or multiple namespaces in a shared Kubernetes cluster
will be able to see the scans performed by the auto-discovery and be able to see the
results of the scans for their individual services, as the scans are executed inside their
Kubernetes namespaces.

A central security team inside the organization can access all security findings in the or-
ganization by configuring the secureCodeBox to persist all findings into an Elasticsearch
cluster.[90, 157] From the Elasticsearch cluster, the security team can aggregate and

36

4 Automatic Security Verification in Kubernetes Prototype

…

Controller ManagerIngress

Controller ManagerController ManagerTargets Controller ManagerController ManagerScansController ManagerPod

Controller ManagerNamespace

secureCodeBox
Operator

auto-discovery
Prototype

created by
auto-disovery

created by
operator

Figure 4-2: Separation of concerns between Scan Execution and Scan Definition.

analyze the organization’s findings and coordinate and support efforts to fix individual
vulnerabilities. This enables both autonomous systems to address vulnerabilities on
their own while still proving central security teams with the ability to get an overview of
the general security stance of an organization, which is a recommended way to organize
modern security programs.[20, 137]

4.6 Automatic Security Assessment of HTTP Services

4.6.1 External Attack Surface via Ingress Resources

Ingress Resources in Kubernetes let the user specify how external HTTP directed to
the cluster should be handled. In applications not running on Kubernetes, this is often
handled by a reverse proxy / virtual hosting solution which routes the HTTP traffic of
a single IP address to a specified service that is configured to handle the HTTP traffic
for a specific hostname. Kubernetes let users define the same concept in the Ingress
Resource, which is then used by an Ingress Controller which was either provided
by the CSP or installed onto the cluster by the user. A popular Ingress Controller
implementation is the NGINX Ingress Controller[143], which uses the popular NGINX
Project to route the traffic to the right service. [23, 123]

Kubernetes Ingress also allows to specify a certificate that should be used by the Ingress
Controller to terminate the TLS connection of the HTTPS request.

37

4 Automatic Security Verification in Kubernetes Prototype

A complete example of an Ingress can be found in listing 4.3. This example uses
the NGINX Ingress Controller[143] to route all HTTP traffic with the hostname juice-
shop.demo.securecodebox.io to the juice-shop Service in the same Kubernetes Names-
pace as the Ingress Resource. The example only contains the Ingress definition for a
single Application, but a single Ingress Resource can also be used to define how traffic
for multiple applications is routed. This is handled by the prototype by starting individual
scans for every hostname found in the Ingress Resource, as not all scanners support to
scan multiple targets at the same time or make the configuration of these scans more
complex.

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: juice−shop
namespace: juice−shop
annotations:

kubernetes.io/ingress.class: nginx
cert−manager.io/cluster−issuer: letsencrypt−production

spec:
tls:

− secretName: juice−shop−tls−secret
hosts:

− juice−shop.demo.securecodebox.io
rules:

− host: juice−shop.demo.securecodebox.io
http:

paths:
− path: /

backend:
serviceName: juice−shop
servicePort: 3000

Listing 4.3: Example Kubernetes Ingress manifest for the Juice Shop application

All of the application level vulnerabilities described in section 3.2 can be detected, at
least to some extend, by running DAST scans or manual penetration tests against the
hostnames specified in the Ingress Resources.

38

4 Automatic Security Verification in Kubernetes Prototype

4.6.2 Internal Attack Surface via Service Resources

Aside from the assessment of the external attack surface via the Ingress Resources,
the auto-discovery uses the Service Resources to assess the internal attack surface
of the application inside the cluster. Services, in their default configuration, are used
to route cluster internal traffic.5 This allows the auto-discovery system to also assess
the internal attack-surface. Accessing both the external as well as the internal attack
surface provides several benefits:

• Assessing the entire attack surface is more along the line with modern security
methodologies like Zero Trust[44, 174]/BeyondProd[68] which recommend not to
imply a certain trust level to traffic only because it coming from an internal network.

• Assessing both internal and external attack surface also allows easier evaluation
of security tools like Web Application Firewalls (WAFs), which in Kubernetes are
often deployed as part of the Ingress controller.[144] This lets users easily evaluate
if a newly found vulnerability in a service is covered by the rules of the WAF.

• Better integration with third-party Kubernetes Add-ons like Service Meshes (e.g.
Istio[110] or linkerd[139]) which often still use Services but replace Ingresses with
the own custom solution. If the prototype would only work with Ingress Resources,
these setups would not be able to be auto-discovered at all.

A problem with Service Resources in this prototype is that they are not HTTP specific
but allow all TCP and UDP traffic, in contrast to Ingress Resources which only support
HTTP / HTTPS traffic. This was worked around, by filtering on official and commonly
used HTTP ports6 or service ports which use the name http or https. This allows
the auto-discovery to work around this limitation. Scans for ports that are mistakenly
guessed to be HTTP / HTTPS ports will fail as the scanners won’t be able to connect to
it. This could potentially be fixed by probing the port, e.g. using an NMAP portscan with
version detection[2], to detect which protocol is supported. This was not implemented in
the version of the prototype.

5Unless they are configured to be of type NodePort or LoadBalancer.
6The used port list in this prototype is 80, 443, 8080, 8443, 3000, 5000, and 8000. With 443 and 8443

being directly discovered to support HTTPS.

39

4 Automatic Security Verification in Kubernetes Prototype

4.6.3 Scanners used for the Security Assessment

OWASP ZAP

The OWASP ZAP project is the most popular (open-source) scanner for web applica-
tions.[30, 31] ZAP is a DAST scanning tool, meaning that it performs black-box scans
that only use HTTP / HTTPS to find vulnerabilities in the application without access to
its source code. The ZAP project is part of the OWASP foundation. ZAP is primarily a
desktop application, but it also provides an API which can be used to programmatically
start and configure scans.[171] [66]

ZAP is able to automatically scan for all of the application level vulnerabilities listed in
section 3.2. That ZAP can detect all the vulnerabilities is no guaranty that it will detect
them in a scan, as many other factors can prevent ZAP from being able to identify
specific vulnerabilities. The ZAP documentation contains a list detailing how the scans
ZAP performs map over to the OWASP Top Ten and also give a brief indication of how
well each of these vulnerabilities is covered by ZAP.[173] Some of the tests, e.g. test
regarding broken authentication, see OWASP Top Ten[12] , only work correctly if ZAP
has been configured specifically for the application which it is scanning as the test
need to have application specific knowledge to detect any meaningful vulnerability. The
auto-discovery prototype currently does not implement a way that lets users specify
application specific configuration for the automatically created scans meaning that
these vulnerabilities cannot be automatically detected, see more on this limitation in
section 5.2.3.

Nikto

Nikto is a tool to identify and assess web servers and their security. To do this Nikto
sends out requests and compares various aspects of the response against its database
to see if parts of the response are directly attributable to specific server technologies.
Besides identifying server types and versions Nikto contains a database of default
files/programs for specific server types, e.g. management/administration interfaces.
[145]

Nikto is useful to identify components with known vulnerabilities, see section 3.2, as

40

4 Automatic Security Verification in Kubernetes Prototype

it can identify both the version of software used but also insecure extensions for the
software.

Nikto also provides some functionally to actively scan for vulnerabilities like SQLi and
XSS. These active detection features have been disabled in the auto-discovery, as they
are already handled by ZAP and they increase the time Nikto takes to complete its
scan.

SSLyze

SSLyze is a tool to scan SSL / TLS hosts for miss-configuration and vulnerable imple-
mentations.[163] SSLyze is used in this prototype to scan the TLS stack of the HTTPS
hosts to ensure that their deployment follows best practices and uses modern and
secure protocol versions and cipher suites. Additionally, SSLyze is also able to detect
security vulnerabilities, like the Heartbleed vulnerability in OpenSSL[6], in the TLS stack
of the server.

SSLyze scans are automatically created for Ingress Resources containing TLS configu-
ration and Services with typical HTTPS ports (ports 443 and 8443).

4.7 Automatic Security Assessment of Container

Images

Pods are the smallest individually deployable Resource in the Kubernetes API.[130] A
Pod consist of one or multiple containers, but it is not possible to deploy a container
in Kubernetes without wrapping it in a Pod.[130] Other workloads like Deployments,
StatefulSets or Jobs are higher-level Resources which are used to manage one or
multiple Pods.[134, 23]

apiVersion: v1
kind: Pod
metadata:

name: juice−shop
namespace: juice−shop

41

4 Automatic Security Verification in Kubernetes Prototype

spec:
containers:
− image: bkimminich/juice−shop:v11.1.2

name: juice−shop
ports:
− containerPort: 3000

name: http
status:

containerStatuses:
− containerID: docker://87c2638594558627eb6741febbc574e03303a01d1a4ce...

image: bkimminich/juice−shop:snapshot
imageID: docker−pullable://bkimminich/juice−shop@sha256:7524757ae91...
name: juice−shop
ready: true
started: true
state:

running:
startedAt: "2020-07-07T09:19:58Z"

Listing 4.4: Excerpt from an example Kubernetes Pod definition for the Juice Shop
application, including relevant status fields

As Pods are the only way to deploy containers in Kubernetes, they pose a good target
for the auto-discovery, as covering Pods in the auto-discovery will also cover all of the
other workloads in Kubernetes. An example of a Pod definition, including relevant fields
from its status, can be found in listing 4.4.

For the auto-discovery, it is important to ensure that it can scan the same version
of the container image that is deployed as a Pod to ensure that the scan results
match the image. This is not always given when using the image reference from
the Pod specification. The image reference (e.g. bkimminich/juice-shop:latest)
consist of two relevant parts the image repository (bkimminich/juice-shop or the fully
qualified name, as this image uses the default image repository from Docker Hub:
docker.io/bkimminich/juice-shop) and the image tag (:latest). Image Tags are not
immutable, which means that the same image pulled at different times can lead to two
different versions of the image pulled. Using immutable image tags is considered to be
a best practice, as it ensures that deployments are reproducible.[42]7

The problem of immutable tags is avoided in the auto-discovery by using the imageID

status field of the Pod. This field is set by the kubelet after pulling the image from

7The immutability of container image tags can be enforced by some image registry.[106]

42

4 Automatic Security Verification in Kubernetes Prototype

the registry and includes a hash of the image content. This hash is then used in the
image reference used by the auto-discovery prototype to run the scan against the exact
container image version deployed in the Pod.

Trivy

Containers are started from container images. Container images consist of a root
filesystem and general information (e.g. exposed ports or environment variables). The
root filesystem contains the code or compiled artifacts of the application alongside
operating system utilities like language runtime or utilities like shells (e.g. bash / zsh).
[42]

Scanning tools can use these images to automatically inspect security aspects of the
images. The extend of security aspects depends on the tool. The most common is
the detection of vulnerable OS packages. Some tools also cover other aspects like
detecting known malware in the image or inspecting if the container image is built to
best practices (e.g. using a non root user). [42]

While the previously mentioned tools are usually classified as DAST tools as the scan the
running application, image scanning tools better fit into the Static Application Security
Testing (SAST) classification as the scan the bundled application artifacts and not a
running instance.

To analyse the container images for security vulnerabilities the auto-discovery prototype
uses the image scanning tool Trivy[168]. Trivy is an open-source image scanning
tool by the security vendor Aqua Security[55]. Other comparable open-source tools
include Clair (maintained by RedHat[153])[71] and Anchor (maintained by Anchor
Inc.)[53].[42]

Trivy was chosen as the container image scanning tool for the prototype for two primary
reasons:

1. Trivy is simpler to set up and its execution model fits better into the secureCodeBox
execution flow as it doesn’t require a Postgres database for its execution like Clair
and Anchor. [168, 71, 53]

43

4 Automatic Security Verification in Kubernetes Prototype

2. Trivy is able to not only scan operating system packages (e.g. installed via apt-get

(Debian / Ubuntu), yum (RedHat, Fedora, CentOS) or apk (Alpine)) but also appli-
cation level packages (e.g. installed via npm (Node.js) or composer (PHP)). [168]

Scanning of container images is a relatively new discipline in the Security field. At the
moment, there are no established best practices to where the image scan should be
performed. Three different locations where the image scan can be performed exist:

1. On the Build Server: In this case, the container image gets scanned directly after
it was built on the build / CI system. This ensures that no vulnerable artifacts
get published. Scanning directly after the image is build has the downside that
vulnerabilities that are discovered after the image has been build and scanned are
not discovered as scanning on CI is a point in time scan and the results cannot be
easily updated when new vulnerabilities get published.[42]

2. On the Image Registry: Many container image registries now come with options
to automatically scan uploaded images for vulnerabilities.[105, 99, 154] Depending
on the registry this can often be easy to enable and in contrast to scanning on the
build server. Scanning inside the registry also allows a continuous scanning model
where new vulnerabilities can be detected in previously build images. [99, 42]

3. On the Runtime Environment: Scanning the Images in the same environment
where they are used. This has the benefit that the runtime environment knows
exactly which image versions are actually in use, which cuts down the number
of false-positive findings for old versions (tags or digests) of the image which are
not used anymore. As the prototype runs inside the runtime environment this is
the only viable option to perform the scan in the auto-discovery prototype. This
approach is similar to the kubei [116] tool mentioned in the prior art section, see
section 4.3.

4.8 Automatic Security Assessment of Kubernetes

Namespaces

So far the auto-discovery has only assessed general, non Kubernetes specific, security
aspects of the discovered applications. Kubernetes specific security aspects are as-

44

4 Automatic Security Verification in Kubernetes Prototype

sessed by the auto-discovery by dispatching Kubernetes specific security scanners for
each namespace. These assess if the configuration deployments follow best practices,
e.g. using the privilege escalation mitigations mentioned in section 3.3.

Kubeaudit

Kubeaudit[114] is an open-source tool by the e-commerce platform Shopify[162] to
assess if the configuration for Resources in Kubernetes Cluster follow security best
practices. It can be used in manifest mode, where it scans a local deployment file before
it is deployed, or in a mode where it assesses the Resources in a running cluster.

The checks (auditors) integrated into kubeaudit, cover all best-practices mentioned in
section 3.3, to mitigate privilege escalation in Kubernetes workloads, e.g. checking if
containers use the privileged flag or if containers are using root users.

Kube-Hunter

kube-hunter [113] is an open-source tool by the security vendor AquaSecurity[55] which
can scan Kubernetes clusters for security vulnerabilities. Kube-hunter provides multiple
different modes in which it can be used. The mode used in the prototype is the pod

mode, in which kube-hunter is deployed as a Kubernetes Job and emulate which attacks
an attacker could perform when they have compromised a Pod in the namespace to
elevate their privileges. [113, 155]

4.9 Example Auto-Discovery Process

To demonstrate the behavior of the prototype, listed below is a step by step example of a
user deploying a new application and the steps taken by the auto-discovery to discover
and scan it. A simplified visualization of these steps can be seen in fig. 4-3. To keep
this somewhat concise this will only show the auto-discovery of Pod Resources, other
Resources like Services and Ingress behave similarly.

45

4 Automatic Security Verification in Kubernetes Prototype

deploys

User

gets notified
on updates

Pod
bkimminich/juice-shop:v11.1.2

gets notified
on updates

creates

auto-discovery Prototype

2,5

updates imageID

run container image

Kubelet

4

pulls container image

Container Runtime Interface (CRI)

D
oc

ke
r H

ub

3

3 3

created by secureCodeBox

ContainerImage Target
bkimmich/juice-shop@sha256:75...

7

downloads container
image layers

Trivy Scan (Kubernetes Job)
bkimmich/juice-shop@sha256:75...

6 8

1

Kubernetes Cluster

Figure 4-3: Simplified system interactions of the auto-discovery prototype.

1. The user creates a Deployment in Kubernetes by running
kubectl create deployment --image bkimminich/juice-shop:v11.1.2 juice

in their command line. This sends a request to the Kubernetes API Server and
creates the Resource in etcd. The Deployment Controller in the Kubernetes
Controller Manager gets notified of the new deployment and creates a new Pod to
match the desired replication count of one of the Deployment.

2. The auto-discovery PodScanReconciler get automatically called, as it is performing
a watch operation on Pod Resources in the cluster, indicating that something a
Pod has been created or updated. The PodScanReconciler then inspects the
Pod specification of the event. As the Pod was just created in the API but wasn’t
properly started by the kubelet, the imageID field in the container status isn’t yet
populated. This causes the PodScanReconciler to ignore this event as it can not
perform a scan until this field is populated, see section 4.7

46

4 Automatic Security Verification in Kubernetes Prototype

3. Parallel to the previous step, the Pod gets assigned to an available Node by
the Kubernetes Scheduler. The kubelet running the assigned Node will then
instruct the CRI to pull the container image from the specified registry and start
the container.

4. Once the container image was downloaded and the container itself was started the
kubelet updates the status field of the Pod. This status contains the exact imageID
of the container image started.

5. As the Pod Resource was updated again, the PodScanReconciler of the auto-
discovery gets called again. This time the imageID is set, the PodScanReconciler

checks if this particular image version was already scanned by checking if such a
scan already exists in the Kubernetes API.

6. As the image is deployed for the first time, no scan for this image version ex-
ists yet. This prompts the PodScanReconciler to create a new ContainerImage

secureCodeBox target for the version of the container image.

7. The secureCodeBox will detect this new target type and automatically create a
Trviy scan for the container image of the ContainerImage target.

8. Trivy will then get started as a Kubernetes Job by the secureCodeBox, download
the layers of the image, and perform its scans on these layers. The results from
Trivy scans will then get converted by a parser inside the secureCodeBox to a
standardized findings format.

47

5 Prototype Verification

In this chapter, the functionality of the prototype is evaluated by its ability to properly
discover and runs security assessments against a specially setup Kubernetes cluster
with regards to the research question of this work.

5.1 Evaluation Cluster Setup

To evaluate the prototype a Kubernetes cluster was set up, on which the prototype could
be tested and evaluated. The cluster contained two Kubernetes Namespaces, both
containing an intentionally vulnerable open-source web application. Both applications
consist of a Deployment creating three replicas (Pods), a ClusterIP Service to load-
balance traffic to the application under a single address, and an Ingress that exposes
the applications to the Internet. A visual overview of the deployments can be found in
fig. 5-1.Firefox file:///Users/jannikhollenbach/Downloads/demo-environment.svg

1 of 1 04.05.20, 12:28

Figure 5-1: Kubernetes Resources of the Demo Environment

The first application used in the evaluation is the OWASP Juice Shop, an intentionally
vulnerable web application written as a Single Page Application (SPA).[149]1 SPA in
this case refers to applications, which are applications where the HTML is primarily

1Disclaimer: The author of this work is part of the Juice Shop Core Team.[150]

48

5 Prototype Verification

rendered in the browser of the user and not on the server. The frontend of Juice Shop is
written in TypeScript using the Angular framework. The backend is written in JavaScript
using Node.js as the runtime. Juice Shop provides an official Docker image on Docker
Hub which was used for the Deployment.[85] The version of Juice Shop used in the
evaluation was 11.1.2.[38] The results of the auto-discovery prototype and problems
encountered during the evaluation for Juice Shop can be found in section 5.2.

The second application used, is the BodgeIt store. BodgeIt is a intentionally vulnerable
application written in Java using Java Server Pages (JSP).[166] BodgeIt is an older
application, with the last actual code change committed in 2014.[69] This makes BodgeIt
an interesting scan target for the evaluation as it is a good example for an older
application which was migrated to Kubernetes without adopting or updating them.
BodgeIt, like Juice Shop, also provides an official container image[87], but this was not
used in the evaluation as the image manifest format was outdated and not compatible
with trivy, the image vulnerability scanning in the prototype, see section 5.3.3.[37]

The evaluation was run on a managed Kubernetes cluster from DigitalOcean[83] running
Kubernetes version v1.18.6. The cluster used nginx-ingress version v0.34.1[143] as
its Ingress Controller, with cert-manager version v0.16.0[70] to automatically creating
valid TLS certificates for the Ingress Resources via Let’s Encrypt[138].

5.2 Auto-Discovery Scan Results for OWASP Juice

Shop

5.2.1 Scans Created by the Auto-Discovery Prototype

The auto-discovery prototype was able to create the scans laid out in chapter 4. An
overview of the scans can be found in fig. 5-2. A screenshot showing the actual scans
via the Kubernetes command-line tool kubectl can be seen in fig. 5-3.

49

5 Prototype VerificationFirefox file:///Users/jannikhollenbach/Downloads/attack-trees.svg

1 of 1 23.07.20, 15:24

Figure 5-2: Overviews of the Scans created for the Individual Resources of the juice-
shop Kubernetes Namespace.

Figure 5-3: Scans created by the auto-discovery for the Resources in the juice-shop
Kubernetes Namespace.

5.2.2 Finding Overview

The scans were able to identify a large number of findings (536 findings). A visual
overview of the findings, broken down by their scanner and by their categories assigned
by the secureCodeBox, can be seen in figure fig. 5-4. The diagram shows that most
of the findings (420 of 501 findings) were identified by Nikto and are of the category
Potential Backup File. These were all found to be false-positive findings, which
Nikto has falsely identified as it could not properly identify the HTTP response of the
Juice Shop as a failed requests. These findings are excluded in further diagrams, as
they increase the complexity of the results. A version of the diagramm without the
Potential Backup File findings can be found in fig. 5-5, this shows a more concise
and balanced set of findings. A complete table of all findings name, severity, and scan
type can be found in the appendix A.1.2. Listed below is a summary of notable results

50

5 Prototype Verification

grouped by the scanners:

Figure 5-4: All findings identified by the scans created by the auto-discovery for OWASP
Juice Shop, grouped by scanner and finding category. Colored stripes
indicating different finding categories.

Figure 5-5: All findings identified by the scans created by the auto-discovery for OWASP
Juice Shop, excluding Potential Backup File findings. Colored stripes indi-
cating different finding categories.

OWASP ZAP Findings

• SQLi vulnerability in the search api of the Juice Shop. Other SQLi vulnerabilities,
e.g. in the login of Juice Shop, unfortunately were not identified

• Missing CSP HTTP header

51

5 Prototype Verification

• Identified hidden /ftp/ directory and files contained in it

• Identified overly permissive Cross-origin resource sharing (CORS) / Cross-Domain
Misconfiguration of the Access-Control-Allow-Origin HTTP header

• Multiple missing Cross-Site Request Forgery (CSRF) tokens

Other then the findings listed above, ZAP also identified some various low severity
findings. The ZAP Scan for the Ingress produced more two more findings than the
Service scan, these were caused by the nginx-ingress controller adding additional HTTP
header to the response. The number of false positives was relatively low, around 5
false-positive findings for the 31 Service / 33 Ingress findings identified by ZAP.

Trivy Findings:

• Authentication bypass in the jsonwebtoken npm package. This allows attackers to
forge JSON Web Tokens (JWTs) of other users.

• XSS vulnerability in the sanitize-html npm package.

Trivy didn’t identify any vulnerabilities in the operating system libraries. This is likely not
a defect in Trivy but caused by the used Juice Shop image using an up to date minimal
base image, using Alpine Linux[48]. Alpine Linux only contains a limited number of
dependencies to reduce the attack surface.[48]

Nikto Findings

• Identified the hidden /ftp/ directory from the /robots.txt file from Juice Shop.

The Nikto Findings for Juice Shop were not helpful. Findings that Nikto reported were
already reported by ZAP with greater detail. Nikto also introduced a lot of noise to the
overall findings by introducing a large number of false-positive findings (see note on
Potential Backup File Finding above). Nikto also created some Findings to outdated
/ deprecated best-practices like a missing x-xss-protection header.[34, 140]

52

5 Prototype Verification

SSLyze Findings

SSLyze did not find any notable results. The default TLS config of the nginx-ingress
controller uses a modern set of TLS versions (TLS 1.2 and higher) and a set of modern
cipher suites.

Kube-hunter Findings

• Granted CAP_NET_RAW Linux capability, which would allow the Pod to perform
advanced networking attacks like Address Resolution Protocol (ARP) spoofing.

• Access to the automounted ServiceAccount token. As the default service account
in the namespace does not any associated RBAC roles this didn’t lead to a
compromise.

The kube-hunter results were relatively limited, as the namespace didn’t contain any
setting compromising its security. But they showed the namespace could be better
configured to further limit the ability of an attacker to extend their privileges.

Kubeaudit Findings

• Juice Shop Deployment doesn’t enforce a non root user

• The default ServiceAccount of the namespace doesn’t have the
automountServiceAccountToken property set to disabled

• Juice Shop Deployment has access to 14 Linux capabilities, which should be
reviewed if they can be dropped

The kubeaudit findings are relatively concise and pointed to potential mitigations which
can be applied to improve the security posture of the deployment.

53

5 Prototype Verification

5.2.3 Problems while Scanning Juice Shop

Container Images

For the Trivy container image scan to work properly the OWASP Juice Shop container
image had to be altered. OWASP Juice Shop had changed their build process configu-
ration in version v10.2.1 to not create a package-lock.json file during its installation
of Node.js dependencies via npm.[41, 40] This file, which keeps track of the installed
versions of npm dependencies, is used by Trivy to compare the installed versions against
databases of vulnerable packages. This change has been reverted for the container
image build in OWASP Juice Shop version v11.1.2 by the author of this work, to allow
the image scanning to work correctly.[38]

ZAP Scan Configuration

Another problem identified while using the prototype to evaluate the performance of
the prototype is that the ZAP Scans created by the auto-discovery were not properly
configured to effectively scan the Juice Shop application. ZAP is not a point and shoot
tool but requires a base level of configuration for the scan target. When this configuration
is left out, the results ZAP can detect are limited. An example here is how ZAP explores
the application to find its endpoints. This is handled by spiders, which fetch the web
page and then recursively explore (spider) every link to other pages included. ZAP
provides two main spiders, the default Spider[172] and the AJAX Spider[170]. The
default Spider is not able to properly spider applications that rely on JavaScript. The
default spider may only be able to find a limited number of pages/endpoints for these
applications as they require the execution of JavaScript to render links to their pages. To
avoid these problems, it is recommended to use the AJAX Spider which uses a browser
to request and render out webpages, which allows it to properly handle pages which
use JavaScript.[67, 170]

This is a problem for the Juice Shop as an application as it is written as a SPA, which uses
JavaScript to render its pages on the client. As a result, the default ZAP configuration
using the default spider was not able to properly spider the application, which caused
ZAP to miss vulnerabilities it should be able to identify when configured correctly.

54

5 Prototype Verification

This poses a problem for the auto-discovery, as it’s not possible to identify which
spider is best for a particular Kubernetes Service or Ingress directly based on their
definition. This problem was solved by allowing users to provide additional informa-
tion/hints on how the application can be properly scanned in the labels of the Kuber-
netes Resources. This is used in the prototype and the Juice Shop scans shown in
this chapter to hint that the ZAP scans should be using the AJAX Spider by using
a zap-hints.auto-discovery.experimental.securecodebox.io/spider label set to
ajax on the Juice Shop Service and Ingress, see the YAML manifest used to deploy
Juice Shop in appendix A.1.1.

The solution can in the future also be applied to other applications, which require special
configuration for scanners to scan them properly. In this case, new types of labels can
be created which allow application developers to give additional information about the
application to the auto-discovery system. This is also portable to most other cloud
environments other than Kubernetes, as most of them allow to attach labels, tags or
more generally meta information to objects/resources .[14, 94, 60]

This specific problem might also be mitigated in the future by ZAP improving their
detection of applications and selecting the best Spider for them automatically. Improved
handling for modern web apps is included on the list of high-level plans of the ZAP
Project.[32]

5.3 Auto-Discovery Scan Results for BodgeIt Store

5.3.1 Scans Created by the Auto-Discovery Prototype

As the deployment for both applications are similar, with the main difference being that
they use different container images, the types of scans created by the auto-discovery
prototype are identical to the scans created for OWASP Juice Shop. A screenshot of the
Kubernetes command-line tool kubectl showing all scans created by the auto-discovery
for the BodgeIt Store can be seen in fig. 5-6

55

5 Prototype Verification

Figure 5-6: Scans created by the auto-discovery for the Resources in the bodgeit Ku-
bernetes Namespace.

5.3.2 Finding Overview

The auto-discovery has identified a similarly large number of finding for BodgeIt (444
findings) as it did for Juice Shop (536 findings). Like in the results for Juice Shop most
findings are from a single scanner, other than Juice Shop most of the findings were
generated by the Trivy vulnerability scanner. A visualization of the findings grouped
by their scanner and finding categories can be found in fig. 5-7. A similar visualization
excluding the findings of the Trivy scanner for better visibility can be found in fig. 5-8.

Figure 5-7: All findings identified by the scans created by the auto-discovery for the
BodgeIt Store, grouped by scanner and finding category. Colored stripes
indicating different finding categories.

56

5 Prototype Verification

Figure 5-8: All findings identified by the scans created by the auto-discovery for the
BodgeIt Store, excluding container image vulnerability findings. Colored
stripes indicating different finding categories.

OWASP ZAP Findings

• SQLi in the basket page

• Integer Overflow Error in the basket page

• Multiple missing CSRF tokens

• Reflected XSS in the search page

• Buffer Overflow in the basket page

ZAP was able to find a good number of findings for the BodgeIt Store, with some of high
severity.

Trivy Findings:

Trviy did identify 334 findings for the BodgeIt image. In contrast to the Trivy results for
Juice Shop, all of these are coming from OS level packages. The high number of findings
can be explained by the age of the BodgeIt container image and the dependencies

57

5 Prototype Verification

contained in it. An overview of the vulnerable packages identified by Trivy broken-down
by the package containing the vulnerability can be found in fig. 5-9.

Figure 5-9: Package names of the vulnerable packages in the BodgeIt container image
identified by trivy

Notable findings of the trivy scan include several vulnerabilities for the deprecated
version of java (openjdk-7) used in the image.[148]

Nikto Findings

• Correctly identified the web server as apache, including a matching version range.

In contrast to the Nikto results for Juice Shop, Nikto was able to correctly identify the
webserver used and did not produce false-positive findings.

SSLyze Findings

Same as the findings for Juice Shop, as the certificates are handled by the cluster-wide
ingress-controller. See section 5.2.2

58

5 Prototype Verification

Kube-hunter Findings

Same as the findings for Juice Shop, as the configuration of both deployments does not
contain any security settings. See section 5.2.2

Kubeaudit Findings

Same as the findings for Juice Shop, as the configuration of both deployments does not
contain any security settings. See section 5.2.2

5.3.3 Problems while Scanning BodgeIt Store

Outdated Image Manifest of the official Container Image

Initially, the trivy scans for BodgeIt have failed, because the official container image[87]
of the BodgeIt Store uses an outdated container image manifest version, which is not
compatible with trivy. To work around these issues the container image was rebuilt to
use the newer manifest version. The rebuild image was publicly published to the private
Docker Hub account of the author.[86] This has likely lowered the number of identified
findings for the container image, as the original BodgeIt image was originally published
in September of 2016[87], while the rebuild version was build based on the tomcat:8.0

base image published in September of 2018[88], which gives the rebuild image around
two years of vulnerability fixes the official image doesn’t have.

59

5 Prototype Verification

5.4 Application Lifecycle Tracking

The auto-discovery prototype will automatically dispatch a new scan when the container
images for a deployed application is updated. In the prototype, not all Resources are
supported by this, as some of the Resources make it hard to track if the underlying
container images have been changed. E.g. Ingress Resources don’t directly reference
Pods but point to a Service which then references a set of Pods. This indirection makes
the lifecycle tracking hard, as the auto-discovery has to follow this multi-leveled chain
to detect changes to the underlying container images. This is possible to implement
but was skipped in this work for time reasons. Supported Kubernetes Resources for
the lifecycle tracking in the prototype developed for this work are Pod and Service
Resources.

Figure 5-10: Demonstration of Lifecycle Tracking for updated Deployments

An example of this lifecycle tracking can be seen in fig. 5-10. In this example, Juice
Shop is deployed and scanned like described in section 5.2, except that it is initially
using the :snapshot container image tag of the Juice Shop container image.[85] The
scans for this version can be seen in Step 1 of the figure. The Juice Shop Deployment
is then updated to use the :v11.1.2 tag of the image in Step 2. In Step 3, executed

60

5 Prototype Verification

about one minute after updating the container image, the updated list of scans created
for Juice Shops is shown. Highlighted in light blue are the newly added scans for the
Pod and the Service. The auto-discovery prototype has created a new Trivy scan for the
new image version and a new ZAP and Nikto scan for the updated revision.

5.5 Prototype Result Summary

The scan results of the auto-discovery prototype have discovered major security defects
in both applications. The probably most severe weaknesses discovered for both applica-
tions were the SQLi and XSS vulnerabilities discovered for both applications. If these
results would have been found in a real-world setting, these vulnerabilities together with
the fact that these were discovered in public internet-facing Ingress Resources would
pose strong indicators that these applications need to be patched as soon as possible
and might even have to be turned off until such patches are applied.

Other findings, e.g. a large number of vulnerabilities in the BodgeIt container image or
the defects discovered by kubeaudit in the security configuration of the deployments,
would give the application and security team of a company actionable indicators on how
the security stance of the individual application can be improved.

One potentially interesting field, whose effectiveness is hard to test in syntactical test, is
the possibilities of an auto-discovery system to find potentially forgotten services, like the
case of the Kubernetes Dashboard at Tesla described in section 3.1. An auto-discovery
system would be able to discover these services and make them visible to developers
and security engineers.

Even though the findings discovered by the auto-discovery pose a good security baseline,
not nearly all vulnerabilities in these applications were discovered, including other SQLi,
XSS, and RCE weaknesses. The results of these scans can be used by security teams
to prioritize obvious vulnerable applications and inform decisions for which applications
manual penetration tests should be executed.

61

6 Conclusion

6.1 Summary

The Kubernetes API can be used to list all Resources in Kubernetes clusters. Ap-
plications in Kubernetes are comprised of a set of individual Resources, each of the
types of Resources fulfills a set of responsibilities e.g. Services are used for networking,
Pods are used to run the containerized applications. Some security aspects can be
directly identified just on basis of these definitions, e.g. Kubernetes specific security
miss-configurations. For a deeper investigation into the security aspects of a Resource,
specialized scans (SAST and DAST) can then be dispatched to assess their security
aspects, e.g. OWASP ZAP to find web-based vulnerabilities or Trivy to find known
vulnerabilities in the deployed container images.

Research Question: How can the information from the Kubernetes API be used to
automatically assess security aspects of applications running inside a Kubernetes
cluster?

This work has shown, that in addition to using the Kubernetes API to list the applications,
it can also be used to continuously track the lifecycle of applications and automatically
repeat individual scans for changed Resources. This can be used to both immediately
discover new applications deployed to Kubernetes, as well as track updated to existing
applications.

The concepts described above were implemented in a prototype that can run inside the
Kubernetes cluster to automatically create the above-mentioned scans for workloads it
has discovered inside the cluster and repeat the scans when the Resources have been
updated.

62

6 Conclusion

This prototype was evaluated inside a demonstration cluster to scan two intentionally
vulnerable applications. During the evaluation, it was shown that the auto-discovery was
able to discover the applications and create matching scans for the different types of
Kubernetes Resources that make up the applications. The scans were able to detect
multiple high severity findings in the applications including SQLi and XSS vulnerabilities.
Even though major vulnerabilities were found by the scans, the applications used in the
evaluation contained many more vulnerabilities, which the scans did not identify. This
has shown that such an auto-discovery concept can be used to establish a security
baseline and help application and security teams to make informed decisions by uncov-
ering obvious vulnerabilities in applications, but it cannot guarantee that the scanned
applications are secure.

To see how these concepts used here for Kubernetes can be used for the broader
landscape of cloud computing, Kubernetes as a system was introduced and classified
as a PaaS system. As such it is assumed that the results of this work can be projected
onto similar environments. How far the results can be projected on these environments
doesn’t only depend on the service model of the environment (IaaS, PaaS, and SaaS)
but is also heavily influenced by the possibilities provided by the API of the individual
environments.

6.2 Future Work

Finding Analysis

During the evaluation of the prototype, several findings were discovered for the two
demo applications. Not all of these findings were valid, some were falsely identified as
venerabilities (false-positive findings). For the auto-discovery concepts to be applied
in a useful manner against clusters of a real organization, the system would need to
have a way to enable users to mark and then automatically identify these findings as
false-positives. Without such a mechanism other valid findings might be overshadowed
by false-positives.

In a similar vein, it was discovered that some of the open-source tools have overlapping
foci, where they would produce findings for the vulnerabilities. Ideally, these findings
would be grouped as one finding to avoid confusion for the users.

63

6 Conclusion

Auto-Discovery for other Cloud Environments

The concepts used in this work to build an auto-discovery system to automatically
assess vulnerabilities in applications running on Kubernetes can be applied to other
cloud environments. Some concepts, e.g. the selection of scanners for web/HTTP
based services can be applied directly.

Other concepts applied in this prototype, like the reconciliation loop/controller pattern
used to connect to the Kubernetes API, might not be applicable for other cloud-based
systems as these patterns are not supported by their API. This might limit the possibilities
for auto-discovery systems in other cloud systems to provide proper application lifecycle
tracking or limit these to only work on a periodic schedule without directly scans on
changes. Depending on the platform other approaches might work, some CSPs allow
users to attach Publish / Subscribe (Pub/Sub) event queues to subscribe to certain
security-relevant events or to register serverless functions to be executed on these
events.[103, 58]

As described in chapter chapter 2, Kubernetes can be best classified as a PaaS system.
As this work has only investigated the possibility of an auto-discovery system, it might
not be possible to apply the learnings directly to other environments using a different
Service Model (IaaS, SaaS).

Comparison against Policy based Security Models

The approach to ensure a baseline for cloud-based services used in this work is to
assess Resources in Kubernetes during their runtime, which means that they already
have been created. Another approach to improve the security of an environment is to
define policies, which then limit the user’s abilities to deploy insecure applications to an
environment. This ensures that inherently insecure Resources are never deployed to
the environment. This is great for security but is limiting to the users as it reduces the
benefits of cloud computing (e.g. On-demand self-service, see NIST SP 800-145).

The best security program likely consists of a healthy mix between both approaches, to
ensure that obvious miss-configurations are forbidden while still allowing valid deploy-
ments to be deployed in self-service. Where this line between policy and testing should
be drawn depends on the security requirements of an organization. Highly regulated

64

6 Conclusion

industries might require policy-based approaches by law. A potential future research
topic would be to establish a model that balances this line between policy and testing
for different organizations with varying security requirements.

Comparison against Security Automation in CI Pipelines

As mentioned in section 4.2.1, the approach was taken by this work is not the only way
to automate parts of the security assessment for applications. Most other approaches
found in the literature base on integrating security testing tools, as mentioned in this
work, into the CI pipelines of software projects. How these approaches differ, which
benefits the individual approaches offer might be an interesting field for future study.

65

Acronyms

AKS Azure Kubernetes Service. 11

ARP Address Resolution Protocol. 53

AWS Amazon Web Services. 9, 11, 24, 32

CI Continious Integration. 17, 31, 44, 65

CNCF Cloud Native Computing Foundation. 11, 17, 23

CNI Container Networking Interface. 19

CORS Cross-origin resource sharing. 52

CRD Custom Resource Definition. 35

CRI Container Runtime Interface. 19, 26, 27, 47

CSP Cloud Service Provider. 9, 10, 18, 19, 21, 22, 30, 32, 37, 51, 64

CSRF Cross-Site Request Forgery. 52, 57

DAST Dynamic Application Security Testing. 32, 38, 40, 43, 62

EKS Amazon Elastic Kubernetes Service. 11

FaaS Function as a Service. 16

66

Acronyms

GCP Google Cloud Plattform. 9, 11

GKE Google Kubernetes Engine. 11

IaaS Infrastructure as a Service. 9, 14, 15, 63, 64

JSP Java Server Pages. 49

JWT JSON Web Token. 52

NIST National Institute of Standards and Technology. 6

NIST SP 800-145 National Institute of Standards and Technologies Special Publication
800-145. 8, 9, 13–15, 64

OS Operating System. 25, 43, 57

OWASP Open Web Application Security Project. 12, 24, 29, 35, 40

PaaS Platform as a Service. 9, 15, 16, 21, 25, 63, 64

Pub/Sub Publish / Subscribe. 64

RBAC Role-based Access Control. 22, 28, 53

RCE Remote Code Execution. 24, 27, 61

SaaS Software as a Service. 9, 63, 64

SAST Static Application Security Testing. 43, 62

SPA Single Page Application. 48, 54

SQLi SQL Injection. 6, 24, 41, 51, 57, 61, 63

67

Acronyms

VM Virtual Machine. 9, 26

WAF Web Application Firewall. 39

XSS Cross Site Scripting. 6, 41, 57, 61, 63

68

Bibliography

[1] Kent Beck et al. Manifesto for Agile Software Development. 2001. URL: https:
//agilemanifesto.org/ (visited on 07/23/2020).

[2] Gordon Lyon. Nmap Network Scanning. insecure.com LLC, 2009. ISBN: 978-0-
9799587-1-7.

[3] George Feuerlicht, Lukas Burkon, and Michal Sebesta. “Cloud Computing Adop-
tion: What are the Issues?” In: System Integration 18.2 (2011), pp. 187–192.

[4] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology, Sept. 2011. URL: https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (visited on
06/24/2020).

[5] Vic (J.R.) Winkler. Securing the Cloud: Cloud computer Security techniques and
tactics. Elsevier Inc., 2011. ISBN: 978-1-59749-592-9.

[6] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the 2014
conference on internet measurement conference. 2014, pp. 475–488.

[7] M.A.C. Dekker and Dimitra Liveri. “Cloud Security Guide for SMEs”. In: European
Union Agency for Network and Information Security (2015). URL: https://
www.enisa.europa.eu/publications/cloud-security-guide-for-smes/at_

download/fullReport (visited on 06/24/2020).
[8] New Cloud Native Computing Foundation to Drive Alignment Among Container

Technologies. May 2015. URL: https://www.cncf.io/announcement/2015/06/
21/new-cloud-native-computing-foundation-to-drive-alignment-among-

container-technologies/ (visited on 06/18/2020).
[9] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”.

In: Proceedings of the European Conference on Computer Systems (EuroSys).
Bordeaux, France, 2015.

[10] Brendan Burns et al. “Borg, Omega, and Kubernetes”. In: Queue 14.1 (2016),
pp. 70–93.

[11] Gene Kim et al. The DevOps Handbook. IT Revolution Press, Oct. 2016. ISBN:
978-1-94278-800-3.

69

https://agilemanifesto.org/
https://agilemanifesto.org/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.enisa.europa.eu/publications/cloud-security-guide-for-smes/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-security-guide-for-smes/at_download/fullReport
https://www.enisa.europa.eu/publications/cloud-security-guide-for-smes/at_download/fullReport
https://www.cncf.io/announcement/2015/06/21/new-cloud-native-computing-foundation-to-drive-alignment-among-container-technologies/
https://www.cncf.io/announcement/2015/06/21/new-cloud-native-computing-foundation-to-drive-alignment-among-container-technologies/
https://www.cncf.io/announcement/2015/06/21/new-cloud-native-computing-foundation-to-drive-alignment-among-container-technologies/

Bibliography

[12] OWASP Foundation & Contributors. OWASP Top Ten 2017. Open Web Applica-
tion Security Project, 2017. URL: https://owasp.org/www-project-top-ten/
(visited on 06/30/2020).

[13] Kubernetes Release - 1.6.0. Mar. 2017. URL: https://github.com/kubernetes/
kubernetes/releases/tag/v1.6.0 (visited on 07/09/2020).

[14] AWS Whitepaper - Tagging Best Practices. Dec. 2018. URL: https : / / d1 .

awsstatic . com / whitepapers / aws - tagging - best - practices . pdf (visited
on 07/29/2020).

[15] Joe Beda. On Securing the Kubernetes Dashboard. Feb. 2018. URL: https:
//blog.heptio.com/on-securing-the-kubernetes-dashboard-16b09b1b7aca

(visited on 05/16/2020).
[16] Brendan Burns and Craig Tracey. Managing Kubernetes. O’Reilly Media, Inc.,

2018. ISBN: 978-1-49203-391-2.
[17] Sarah Conway. Kubernetes Is First CNCF Project To Graduate. Mar. 2018. URL:

https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-

graduate/ (visited on 06/20/2020).
[18] Dan Goodin. Tesla cloud resources are hacked to run cryptocurrency-mining mal-

ware. Feb. 2018. URL: https://arstechnica.com/information-technology/
2018/02/tesla- cloud- resources- are- hacked- to- run- cryptocurrency-

mining-malware/ (visited on 05/16/2020).
[19] RedLock Inc. Lessons from the Cryptojacking Attack at Tesla. Feb. 2018. URL:

https://redlock.io/blog/cryptojacking-tesla (visited on 07/09/2020).
[20] Zane Lackey and Rebecca Huehls. Building a Modern Security Program. O’Reilly

Media, Inc., Aug. 2018. ISBN: 978-1-49195-631-1.
[21] Liz Rice and Michael Hausenblas. Kubernetes Security. O’Reilly Media, Inc.,

Nov. 2018. ISBN: 978-1-49203-906-8.
[22] Peter Balogh. DAST Operator - Dynamic application security testing in Kuber-

netes. Sept. 2019. URL: https://banzaicloud.com/blog/auto-dast/ (visited
on 07/27/2020).

[23] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes: Up and Running:
Dive into the Future of Infrastructure. Second Edition. O’Reilly Media, Inc., 2019.

[24] Brendan Burns et al. Kubernetes Best Practices. O’Reilly Media, Inc., Nov. 2019.
ISBN: 978-1-49205-647-8.

[25] Chris Dotson. Practical Cloud Security. O’Reilly Media, Inc., Mar. 2019. ISBN:
978-1-49203-751-4.

[26] Michael Hausenblas and Stefan Schimanski. Programming Kubernetes: Devel-
oping Cloud-Native Applications. O’Reilly Media, Inc., 2019.

70

https://owasp.org/www-project-top-ten/
https://github.com/kubernetes/kubernetes/releases/tag/v1.6.0
https://github.com/kubernetes/kubernetes/releases/tag/v1.6.0
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf
https://blog.heptio.com/on-securing-the-kubernetes-dashboard-16b09b1b7aca
https://blog.heptio.com/on-securing-the-kubernetes-dashboard-16b09b1b7aca
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://arstechnica.com/information-technology/2018/02/tesla-cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/
https://arstechnica.com/information-technology/2018/02/tesla-cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/
https://arstechnica.com/information-technology/2018/02/tesla-cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/
https://redlock.io/blog/cryptojacking-tesla
https://banzaicloud.com/blog/auto-dast/

Bibliography

[27] Tony Hsiang-Chih Hsu. Practical Security Automation and Testing: Tools and
techniques for automated security scanning and testing in DevSecOps. Packt
Publishing Ltd., Feb. 2019. ISBN: 978-1-78980-202-3.

[28] Bilgin Ibryam and Roland Huß. Kubernetes Patterns: Reusable Elements for
Designing Cloud-Native Applications. O’Reilly Media, Inc., 2019.

[29] Sysdig Inc. 2019 Container Usage Report. 2019. URL: https://sysdig.com/
blog/sysdig-2019-container-usage-report/ (visited on 06/27/2020).

[30] Simon Bennetts. Is ZAP the World’s most Popular Web Scanner? Apr. 2020.
URL: https://www.zaproxy.org/blog/2020-04-02-is-zap-the-worlds-most-
popular-web-scanner/ (visited on 07/07/2020).

[31] Simon Bennetts. Tweet - Zap is the Most Popular Web Scanner. Apr. 2020.
URL: https://twitter.com/psiinon/status/1250034318530969607 (visited on
07/07/2020).

[32] Simon Bennetts. ZAP Google Groups - ZAP High Level Plans. May 2020. URL:
https://groups.google.com/g/zaproxy-develop/c/t997yIGcSd4 (visited on
07/14/2020).

[33] OWASP Foundation & Contributors. OWASP Cheat Sheet Series. Open Web
Application Security Project, 2020. URL: https://owasp.org/www-project-
cheat-sheets/ (visited on 07/06/2020).

[34] OWASP Foundation & Contributors. OWASP Cheat Sheet Series - Cross Site
Scripting Prevention - X-XSS-Protection Header. Open Web Application Security
Project, 2020. URL: https://cheatsheetseries.owasp.org/cheatsheets/
Cross_Site_Scripting_Prevention_Cheat_Sheet.html#x-xss-protection-

header (visited on 07/21/2020).
[35] OWASP Foundation & Contributors. OWASP Cheat Sheet Series - Docker

Security Cheat Sheet. Open Web Application Security Project, 2020. URL: https:
/ / cheatsheetseries . owasp . org / cheatsheets / Docker _ Security _ Cheat _

Sheet.html (visited on 07/16/2020).
[36] OWASP Foundation & Contributors. OWASP Web Security Testing Guide Version

4.1. Open Web Application Security Project, Apr. 2020.
[37] Jannik Hollenbach. BodgeIt Store Issues - Docker Image is using a deprecated

Docker Schema. July 2020. URL: https://github.com/psiinon/bodgeit/
issues/26 (visited on 07/15/2020).

[38] Jannik Hollenbach. OWASP Juice Shop - Release v11.1.2. July 2020. URL:
https://github.com/bkimminich/juice-shop/releases/tag/v11.1.2 (visited
on 07/14/2020).

71

https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://www.zaproxy.org/blog/2020-04-02-is-zap-the-worlds-most-popular-web-scanner/
https://www.zaproxy.org/blog/2020-04-02-is-zap-the-worlds-most-popular-web-scanner/
https://twitter.com/psiinon/status/1250034318530969607
https://groups.google.com/g/zaproxy-develop/c/t997yIGcSd4
https://owasp.org/www-project-cheat-sheets/
https://owasp.org/www-project-cheat-sheets/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#x-xss-protection-header
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#x-xss-protection-header
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#x-xss-protection-header
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://github.com/psiinon/bodgeit/issues/26
https://github.com/psiinon/bodgeit/issues/26
https://github.com/bkimminich/juice-shop/releases/tag/v11.1.2

Bibliography

[39] Center for Internet Security Inc. CIS Kubernetes Benchmark (v1.5.1 - 02-14-
2020). Feb. 2020. URL: https://www.cisecurity.org/benchmark/kubernetes/
(visited on 07/02/2020).

[40] Björn Kimminich. OWASP Juice Shop - Commit b0ec8f3. Apr. 2020. URL: https:
//github.com/bkimminich/juice-shop/commit/b0ec8f3 (visited on 07/14/2020).

[41] Björn Kimminich. OWASP Juice Shop - Release v10.2.1. Apr. 2020. URL: https:
//github.com/bkimminich/juice-shop/releases/tag/v10.2.1 (visited on
07/14/2020).

[42] Liz Rice. Container Security. O’Reilly Media, Inc., Apr. 2020. ISBN: 978-1-49205-
670-6.

[43] Liz Rice. Starboard: The Kubernetes-Native Toolkit for Unifying Security. June
2020. URL: https://blog.aquasec.com/starboard-kubernetes-tools (visited
on 07/27/2020).

[44] Scott Rose et al. Zero Trust Architecture (Draft 2). National Institute of Standards
and Technology, Feb. 2020. URL: https://csrc.nist.gov/publications/
detail/sp/800-207/draft (visited on 07/02/2020).

[45] Ariel Shuper. Kubei : A Kubernetes Runtime Vulnerabilities Scanner. Mar. 2020.
URL: https://www.portshift.io/blog/kubernetes-runtime-vulnerabilities-
scanner-launch/ (visited on 07/27/2020).

[46] Yossi Weizman. Threat matrix for Kubernetes. Apr. 2020. URL: https://www.
microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

(visited on 06/07/2020).
[47] "Distroless" Docker Images. URL: https://github.com/GoogleContainerTools/

distroless (visited on 07/03/2020).
[48] Alpine Linux - Alpine Linux is a security-oriented, lightweight Linux distribution

based on musl libc and busybox. URL: https://www.alpinelinux.org/ (visited
on 07/21/2020).

[49] Amazon AWS Data Center Security. URL: https://aws.amazon.com/compliance/
data-center/perimeter-layer/ (visited on 06/07/2020).

[50] Amazon EKS on AWS Outposts. URL: https://docs.aws.amazon.com/eks/
latest/userguide/eks-on-outposts.html (visited on 06/24/2020).

[51] Amazon Elastic Kubernetes Service. URL: https://aws.amazon.com/eks/
(visited on 07/28/2020).

[52] Amazon Web Services. URL: https://aws.amazon.com/ (visited on 07/20/2020).
[53] Anchore Container Analysis. URL: https://anchore.com/ (visited on 07/15/2020).
[54] App Engine - Fully managed serverless application platform. URL: https://

cloud.google.com/appengine/ (visited on 06/20/2020).
[55] Aqua Security. URL: https://www.aquasec.com/ (visited on 07/21/2020).

72

https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/bkimminich/juice-shop/commit/b0ec8f3
https://github.com/bkimminich/juice-shop/commit/b0ec8f3
https://github.com/bkimminich/juice-shop/releases/tag/v10.2.1
https://github.com/bkimminich/juice-shop/releases/tag/v10.2.1
https://blog.aquasec.com/starboard-kubernetes-tools
https://csrc.nist.gov/publications/detail/sp/800-207/draft
https://csrc.nist.gov/publications/detail/sp/800-207/draft
https://www.portshift.io/blog/kubernetes-runtime-vulnerabilities-scanner-launch/
https://www.portshift.io/blog/kubernetes-runtime-vulnerabilities-scanner-launch/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless
https://www.alpinelinux.org/
https://aws.amazon.com/compliance/data-center/perimeter-layer/
https://aws.amazon.com/compliance/data-center/perimeter-layer/
https://docs.aws.amazon.com/eks/latest/userguide/eks-on-outposts.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-on-outposts.html
https://aws.amazon.com/eks/
https://aws.amazon.com/
https://anchore.com/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://www.aquasec.com/

Bibliography

[56] AWS Ground Station. URL: https://aws.amazon.com/ground-station/ (visited
on 06/06/2020).

[57] AWS Inspector. URL: https://aws.amazon.com/inspector/ (visited on 07/19/2020).
[58] AWS Lambda. URL: https://aws.amazon.com/lambda/ (visited on 06/06/2020).
[59] Azure Blog - Detect large-scale cryptocurrency mining attack against Kuber-

netes clusters. URL: https://azure.microsoft.com/en-gb/blog/detect-
largescale-cryptocurrency-mining-attack-against-kubernetes-clusters/

(visited on 07/22/2020).
[60] Azure Documentation - Tag support for Azure resources. URL: https://docs.

microsoft.com/en-us/azure/azure-resource-manager/management/tag-

support (visited on 07/29/2020).
[61] Azure Functions. URL: https://azure.microsoft.com/en- us/services/

functions/ (visited on 06/06/2020).
[62] Azure Hybrid Cloud. URL: https://azure.microsoft.com/en-us/overview/

azure-hybrid/ (visited on 06/24/2020).
[63] Azure Kubernetes Service (AKS). URL: https://azure.microsoft.com/en-

us/services/kubernetes-service/ (visited on 07/28/2020).
[64] Azure Security Center. URL: https://azure.microsoft.com/en-us/services/

security-center/ (visited on 07/19/2020).
[65] Banzai Cloud. URL: https://banzaicloud.com/ (visited on 07/21/2020).
[66] Simon Bennetts. “OWASP ZAP Intro”. In: OWASP Hamburg Stammtisch (Apr. 23,

2020). URL: https://www.youtube.com/watch?v=SD28HdVI-Wk (visited on
07/08/2020).

[67] Simon Bennetts and Mark Miller. ZAP in Ten. URL: https://www.alldaydevops.
com/zap-in-ten (visited on 06/27/2020).

[68] BeyondProd: A new approach to cloud-native security. URL: https://cloud.
google.com/security/beyondprod/ (visited on 07/02/2020).

[69] BodgeIt Store - Commit History. URL: https://github.com/psiinon/bodgeit/
commits/master (visited on 07/15/2020).

[70] Cert Manager - Automatically provision and manage TLS certificates in Ku-
bernetes. URL: https://github.com/jetstack/cert- manager (visited on
07/14/2020).

[71] Clair - Vulnerability Static Analysis for Containers. URL: https://github.com/
quay/clair (visited on 06/30/2020).

[72] Cloud Foundry Open Source Cloud Application Platform. URL: https://www.
cloudfoundry.org/ (visited on 06/20/2020).

[73] Cloud Native Buildpack. URL: https://buildpacks.io/ (visited on 06/20/2020).

73

https://aws.amazon.com/ground-station/
https://aws.amazon.com/inspector/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/blog/detect-largescale-cryptocurrency-mining-attack-against-kubernetes-clusters/
https://azure.microsoft.com/en-gb/blog/detect-largescale-cryptocurrency-mining-attack-against-kubernetes-clusters/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-support
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-support
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-support
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/overview/azure-hybrid/
https://azure.microsoft.com/en-us/overview/azure-hybrid/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/security-center/
https://azure.microsoft.com/en-us/services/security-center/
https://banzaicloud.com/
https://www.youtube.com/watch?v=SD28HdVI-Wk
https://www.alldaydevops.com/zap-in-ten
https://www.alldaydevops.com/zap-in-ten
https://cloud.google.com/security/beyondprod/
https://cloud.google.com/security/beyondprod/
https://github.com/psiinon/bodgeit/commits/master
https://github.com/psiinon/bodgeit/commits/master
https://github.com/jetstack/cert-manager
https://github.com/quay/clair
https://github.com/quay/clair
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
https://buildpacks.io/

Bibliography

[74] Cloud Native Computing Foundation. URL: https://www.cncf.io/ (visited on
07/20/2020).

[75] CloudSploit - Cloud Security Best Practices as a Service. URL: https : / /

cloudsploit.com/ (visited on 07/21/2020).
[76] CNCF Landscape. URL: https://landscape.cncf.io/ (visited on 07/09/2020).
[77] CNCF Landscape Certified Kubernetes - Hosted. URL: https://landscape.

cncf . io / category = certified - kubernetes - hosted & format = card - mode &

grouping=category (visited on 06/21/2020).
[78] CNCF Members. URL: https://www.cncf.io/about/members/ (visited on

06/21/2020).
[79] Ian Coldwater and Brad Geesaman. “Advanced Persistence Threats: The Future

of Kubernetes Attacks”. In: RSA Conference 2020 San Francisco (Feb. 28, 2020).
URL: https://www.rsaconference.com/usa/agenda/advanced-persistence-
threats-the-future-of-kubernetes-attacks (visited on 05/16/2020).

[80] containerd - An industry-standard container runtime with an emphasis on sim-
plicity, robustness and portability. URL: https://containerd.io/ (visited on
06/27/2020).

[81] CoreDNS: DNS and Service Discovery. URL: https://coredns.io/ (visited on
06/24/2020).

[82] DAST Operator - Dynamic Application Security Testing. URL: https://github.
com/banzaicloud/dast-operator (visited on 07/19/2020).

[83] DigitalOcean. URL: https://www.digitalocean.com/ (visited on 07/21/2020).
[84] Docker. URL: https://www.docker.com/ (visited on 06/27/2020).
[85] Docker Hub - OWASP Juice Shop. URL: https://hub.docker.com/r/bkimminich/

juice-shop (visited on 06/26/2020).
[86] Docker Hub - Rebuild -The BodgeIt Store. URL: https://hub.docker.com/r/

j12934/bodgeit (visited on 07/15/2020).
[87] Docker Hub - The BodgeIt Store. URL: https://hub.docker.com/r/psiinon/

bodgeit/ (visited on 07/15/2020).
[88] Docker Hub - tomcat:8.0. URL: https://hub.docker.com/layers/tomcat/

library/tomcat/8.0/images/sha256-3c45e165dc72e3fc0f147dfa0c4712145cde00c2efc78d6df50ca33437542079

(visited on 07/21/2020).
[89] Docker Windows Containers. URL: https : / / www . docker . com / products /

windows-containers (visited on 07/31/2020).
[90] Elastic Stack. URL: https://www.elastic.co/products/elastic-stack (visited

on 12/16/2019).

74

https://www.cncf.io/
https://cloudsploit.com/
https://cloudsploit.com/
https://landscape.cncf.io/
https://landscape.cncf.io/category=certified-kubernetes-hosted&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-hosted&format=card-mode&grouping=category
https://landscape.cncf.io/category=certified-kubernetes-hosted&format=card-mode&grouping=category
https://www.cncf.io/about/members/
https://www.rsaconference.com/usa/agenda/advanced-persistence-threats-the-future-of-kubernetes-attacks
https://www.rsaconference.com/usa/agenda/advanced-persistence-threats-the-future-of-kubernetes-attacks
https://containerd.io/
https://coredns.io/
https://github.com/banzaicloud/dast-operator
https://github.com/banzaicloud/dast-operator
https://www.digitalocean.com/
https://www.docker.com/
https://hub.docker.com/r/bkimminich/juice-shop
https://hub.docker.com/r/bkimminich/juice-shop
https://hub.docker.com/r/j12934/bodgeit
https://hub.docker.com/r/j12934/bodgeit
https://hub.docker.com/r/psiinon/bodgeit/
https://hub.docker.com/r/psiinon/bodgeit/
https://hub.docker.com/layers/tomcat/library/tomcat/8.0/images/sha256-3c45e165dc72e3fc0f147dfa0c4712145cde00c2efc78d6df50ca33437542079
https://hub.docker.com/layers/tomcat/library/tomcat/8.0/images/sha256-3c45e165dc72e3fc0f147dfa0c4712145cde00c2efc78d6df50ca33437542079
https://www.docker.com/products/windows-containers
https://www.docker.com/products/windows-containers
https://www.elastic.co/products/elastic-stack

Bibliography

[91] Phil Estes. “Let’s Try All the CRI Runtimes: Part 2: Answering the Why Question!”
In: KubeCon + CloudNativeCon North America 2019 (Nov. 20, 2019). URL:
https://kccncna19.sched.com/event/Uaag (visited on 06/27/2020).

[92] Phil Estes. “Let’s Try Every CRI Runtime Available for Kubernetes. No, Really!”
In: KubeCon + CloudNativeCon Europe 2019 (Mar. 23, 2019). URL: https:
//kccnceu19.sched.com/event/MPdB (visited on 06/27/2020).

[93] Firecracker - Secure and fast microVMs for serverless computing. URL: https:
//firecracker-microvm.github.io/ (visited on 06/27/2020).

[94] GCP Documentation - Labeling resources. URL: https://cloud.google.com/
compute/docs/labeling-resources (visited on 07/29/2020).

[95] GKE - Security Overview. URL: https://cloud.google.com/kubernetes-
engine/docs/concepts/security-overview (visited on 07/06/2020).

[96] Google Anthos GKE. URL: https://cloud.google.com/anthos/gke/ (visited
on 06/24/2020).

[97] Google Cloud Functions. URL: https://cloud.google.com/functions/ (visited
on 06/06/2020).

[98] Google Cloud Plattform. URL: https://cloud.google.com/ (visited on 07/20/2020).
[99] Google Container Registry - Vulnerability scanning. URL: https : / / cloud .

google.com/container- registry/docs/vulnerability- scanning (visited
on 07/21/2020).

[100] Google Data Center Security. URL: https://www.google.com/about/datacenters/
data-security/ (visited on 06/07/2020).

[101] Google G Suite. URL: https://gsuite.google.com/ (visited on 06/06/2020).
[102] Google Kubernetes Engine. URL: https://cloud.google.com/kubernetes-

engine/ (visited on 07/28/2020).
[103] Google Security Command Center. URL: https://cloud.google.com/security-

command-center (visited on 07/19/2020).
[104] gVisor - gVisor is an application kernel for containers that provides efficient

defense-in-depth anywhere. URL: https://gvisor.dev/ (visited on 06/27/2020).
[105] Harbor Blog - Harbor 1.10 Puts Security and Pluggable Scanners in the Lime-

light. URL: https://goharbor.io/blog/harbor-1.10-release/ (visited on
07/21/2020).

[106] Harbor Documentation - Tag Immutability Rules. URL: https://goharbor.io/
docs/1.10/working- with- projects/working- with- images/create- tag-

immutability-rules/ (visited on 07/15/2020).
[107] Helm Documentation - RBAC. URL: https://helm.sh/docs/topics/rbac/

(visited on 07/09/2020).

75

https://kccncna19.sched.com/event/Uaag
https://kccnceu19.sched.com/event/MPdB
https://kccnceu19.sched.com/event/MPdB
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://cloud.google.com/compute/docs/labeling-resources
https://cloud.google.com/compute/docs/labeling-resources
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/security-overview
https://cloud.google.com/anthos/gke/
https://cloud.google.com/functions/
https://cloud.google.com/
https://cloud.google.com/container-registry/docs/vulnerability-scanning
https://cloud.google.com/container-registry/docs/vulnerability-scanning
https://www.google.com/about/datacenters/data-security/
https://www.google.com/about/datacenters/data-security/
https://gsuite.google.com/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/security-command-center
https://cloud.google.com/security-command-center
https://gvisor.dev/
https://goharbor.io/blog/harbor-1.10-release/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/create-tag-immutability-rules/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/create-tag-immutability-rules/
https://goharbor.io/docs/1.10/working-with-projects/working-with-images/create-tag-immutability-rules/
https://helm.sh/docs/topics/rbac/

Bibliography

[108] Heroku - Cloud Application Platform. URL: https://www.heroku.com/ (visited
on 06/20/2020).

[109] Kelsey Hightower. “Kubernetes and the Path to Serverless”. In: KubeCon +
CloudNativeCon North America 2018 (Dec. 13, 2020). URL: https://kccna18.
sched.com/event/Gsy5 (visited on 06/19/2020).

[110] Istio - Connect, secure, control, and observe services. URL: https://istio.io/
(visited on 06/30/2020).

[111] k3s - Lightweight Kubernetes. URL: https://k3s.io/ (visited on 06/23/2020).
[112] Kata Containers - The speed of containers, the security of VMs. URL: https:

//katacontainers.io/ (visited on 06/27/2020).
[113] kube-hunter - Hunt for security weaknesses in Kubernetes clusters. URL: https:

//github.com/aquasecurity/kube-hunter (visited on 07/21/2020).
[114] Kubeaudit - kubeaudit helps you audit your Kubernetes clusters against common

security controls. URL: https://github.com/Shopify/kubeaudit/releases
(visited on 07/23/2020).

[115] Kubebuilder - SDK for building Kubernetes APIs using CRDs. URL: https://
book.kubebuilder.io/ (visited on 07/18/2020).

[116] Kubei - A flexible Kubernetes Runtime Scanner. URL: https://github.com/
Portshift/kubei (visited on 07/19/2020).

[117] Kubernetes API Reference - v1.18. URL: https : / / kubernetes . io / docs /

reference/generated/kubernetes-api/v1.18/ (visited on 07/18/2020).
[118] Kubernetes Cluster Autoscaler. URL: https://github.com/kubernetes/autoscaler

(visited on 06/24/2020).
[119] Kubernetes Documentation - Cloud Controller Manager. URL: https://kubernetes.

io/docs/concepts/architecture/cloud-controller/ (visited on 07/07/2020).
[120] Kubernetes Documentation - Configure a Security Context for a Pod or Con-

tainer. URL: https://kubernetes.io/docs/tasks/configure-pod-container/
security-context/ (visited on 07/09/2020).

[121] Kubernetes Documentation - Configure Service Accounts for Pods. URL: https:
//kubernetes.io/docs/tasks/configure-pod-container/configure-service-

account/ (visited on 07/16/2020).
[122] Kubernetes Documentation - Horizontal Pod Autoscaler. URL: https://kubernetes.

io/docs/tasks/run-application/horizontal-pod-autoscale/ (visited on
11/18/2019).

[123] Kubernetes Documentation - Ingress. URL: https://kubernetes.io/docs/
concepts/services-networking/ingress/ (visited on 07/07/2020).

[124] Kubernetes Documentation - Kubernetes Components. URL: https://kubernetes.
io/docs/concepts/overview/components/ (visited on 06/20/2020).

76

https://www.heroku.com/
https://kccna18.sched.com/event/Gsy5
https://kccna18.sched.com/event/Gsy5
https://istio.io/
https://k3s.io/
https://katacontainers.io/
https://katacontainers.io/
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-hunter
https://github.com/Shopify/kubeaudit/releases
https://book.kubebuilder.io/
https://book.kubebuilder.io/
https://github.com/Portshift/kubei
https://github.com/Portshift/kubei
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://github.com/kubernetes/autoscaler
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

Bibliography

[125] Kubernetes Documentation - Kubernetes Security and Disclosure Information.
URL: https://kubernetes.io/docs/reference/issues-security/security/
(visited on 07/09/2020).

[126] Kubernetes Documentation - Kubernetes Version and Version Skew Support
Policy. URL: https://kubernetes.io/docs/setup/release/version-skew-
policy/ (visited on 07/09/2020).

[127] Kubernetes Documentation - Network Plugins. URL: https : / / kubernetes .

io/docs/concepts/extend- kubernetes/compute- storage- net/network-

plugins/ (visited on 06/23/2020).
[128] Kubernetes Documentation - Network Policies. URL: https : / / kubernetes .

io/docs/concepts/services- networking/network- policies/ (visited on
06/24/2020).

[129] Kubernetes Documentation - Pod Security Policies. URL: https://kubernetes.
io/docs/concepts/policy/pod-security-policy/ (visited on 06/30/2020).

[130] Kubernetes Documentation - Pods. URL: https : / / kubernetes . io / docs /

concepts/workloads/pods/pod/ (visited on 07/15/2020).
[131] Kubernetes Documentation - Resource Quotas. URL: https://kubernetes.io/

docs/concepts/policy/resource-quotas/ (visited on 06/24/2020).
[132] Kubernetes Documentation - WebUI (Dashboard). URL: https://kubernetes.

io/docs/tasks/access-application-cluster/web-ui-dashboard/ (visited on
07/09/2020).

[133] Kubernetes Documentation - What is Kubernetes? URL: https://kubernetes.
io/docs/concepts/overview/what-is-kubernetes/ (visited on 05/14/2020).

[134] Kubernetes Documentation - Workloads. URL: https://kubernetes.io/docs/
concepts/workloads/controllers/ (visited on 07/15/2020).

[135] Kubernetes Issue Tracer - CVE’s. URL: https://github.com/kubernetes/
kubernetes/issues?q=is:issue%20label:area/security%20in:title%20CVE

(visited on 06/24/2020).
[136] Kubernetes Metrics Server. URL: https://github.com/kubernetes- sigs/

metrics-server (visited on 06/24/2020).
[137] Zane Lackey. “DevSecOps Lessons Learned with Zane Lackey”. In: Spotlight

on Cloud (Oct. 16, 2019). O’Reilly Media, Inc. URL: https://learning.oreilly.
com/live- training/courses/spotlight- on- cloud- devsecops- lessons-

learned-with-zane-lackey/0636920305804/ (visited on 07/23/2020).
[138] Let’s Encrypt - A nonprofit Certificate Authority providing TLS certificates to 225

million websites. URL: https://letsencrypt.org/ (visited on 07/14/2020).
[139] Linkerd - Ultralight, security-first service mesh for Kubernetes. URL: https:

//linkerd.io/ (visited on 06/30/2020).

77

https://kubernetes.io/docs/reference/issues-security/security/
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/setup/release/version-skew-policy/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://github.com/kubernetes/kubernetes/issues?q=is:issue%20label:area/security%20in:title%20CVE
https://github.com/kubernetes/kubernetes/issues?q=is:issue%20label:area/security%20in:title%20CVE
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://learning.oreilly.com/live-training/courses/spotlight-on-cloud-devsecops-lessons-learned-with-zane-lackey/0636920305804/
https://learning.oreilly.com/live-training/courses/spotlight-on-cloud-devsecops-lessons-learned-with-zane-lackey/0636920305804/
https://learning.oreilly.com/live-training/courses/spotlight-on-cloud-devsecops-lessons-learned-with-zane-lackey/0636920305804/
https://letsencrypt.org/
https://linkerd.io/
https://linkerd.io/

Bibliography

[140] MDN Web Docs - X-XSS-Protection. URL: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/X-XSS-Protection (visited on 07/21/2020).

[141] Microsoft Azure. URL: https://azure.microsoft.com/ (visited on 07/20/2020).
[142] Microsoft Office365. URL: https://www.microsoft.com/en-us/microsoft-365

(visited on 06/06/2020).
[143] NGINX Ingress Controller. URL: https://kubernetes.github.io/ingress-

nginx/ (visited on 07/07/2020).
[144] NGINX Ingress Controller - Documentation ModSecurity. URL: https://kubernetes.

github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

#modsecurity (visited on 07/13/2020).
[145] Nikto Documentation - Introduction. URL: https://cirt.net/nikto2-docs/

introduction.html (visited on 07/08/2020).
[146] OpenFaaS Main Website. URL: https : / / www . openfaas . com/ (visited on

10/05/2019).
[147] OpenStack. URL: https://www.openstack.org/ (visited on 07/29/2020).
[148] Oracle Java Release Cycle. URL: https://www.oracle.com/java/technologies/

java-se-support-roadmap.html (visited on 07/21/2020).
[149] OWASP Juice Shop. URL: https://owasp.org/www-project-juice-shop/

(visited on 06/26/2020).
[150] OWASP Juice Shop - Contributors. URL: https://github.com/bkimminich/

juice-shop#contributors (visited on 07/15/2020).
[151] OWASP ZAP. URL: https://github.com/zaproxy/zaproxy (visited on 12/09/2019).
[152] Project Calico. URL: https://www.projectcalico.org/ (visited on 06/23/2020).
[153] Red Hat. URL: https://www.redhat.com/ (visited on 07/27/2020).
[154] Red Hat Quay. URL: https://www.openshift.com/products/quay (visited on

07/21/2020).
[155] Liz Rice. “Lessons from hacking Kubernetes with kube-hunter”. In: O’Reilly

Velocity Conference 2019 (June 12, 2018). URL: https://conferences.oreilly.
com/velocity/vl-ca/public/schedule/detail/74861 (visited on 07/21/2020).

[156] Liz Rice. “Running with Scissors”. In: KubeCon + CloudNativeCon Europe 2018
(May 4, 2018). URL: https://kccnceu18.sched.com/event/EMyr/keynote-
running-with-scissors-liz-rice (visited on 07/03/2020).

[157] secureCodeBox Docs - Elasticsearch Persistence Provider. URL: https://www.
securecodebox . io / integrations / persistence - provider / elasticsearch

(visited on 07/23/2020).
[158] secureCodeBox v2 Alpha - Repository. URL: https://github.com/secureCodeBox/

secureCodeBox-v2-alpha (visited on 07/18/2020).

78

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://azure.microsoft.com/
https://www.microsoft.com/en-us/microsoft-365
https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#modsecurity
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#modsecurity
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#modsecurity
https://cirt.net/nikto2-docs/introduction.html
https://cirt.net/nikto2-docs/introduction.html
https://www.openfaas.com/
https://www.openstack.org/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://owasp.org/www-project-juice-shop/
https://github.com/bkimminich/juice-shop#contributors
https://github.com/bkimminich/juice-shop#contributors
https://github.com/zaproxy/zaproxy
https://www.projectcalico.org/
https://www.redhat.com/
https://www.openshift.com/products/quay
https://conferences.oreilly.com/velocity/vl-ca/public/schedule/detail/74861
https://conferences.oreilly.com/velocity/vl-ca/public/schedule/detail/74861
https://kccnceu18.sched.com/event/EMyr/keynote-running-with-scissors-liz-rice
https://kccnceu18.sched.com/event/EMyr/keynote-running-with-scissors-liz-rice
https://www.securecodebox.io/integrations/persistence-provider/elasticsearch
https://www.securecodebox.io/integrations/persistence-provider/elasticsearch
https://github.com/secureCodeBox/secureCodeBox-v2-alpha
https://github.com/secureCodeBox/secureCodeBox-v2-alpha

Bibliography

[159] secureCodeBox Website. URL: https://www.securecodebox.io (visited on
11/21/2019).

[160] Security concepts for applications and clusters in Azure Kubernetes Service
(AKS). URL: https://docs.microsoft.com/en- us/azure/aks/concepts-
security (visited on 07/06/2020).

[161] Security in Amazon EKS. URL: https://docs.aws.amazon.com/eks/latest/
userguide/security.html (visited on 07/06/2020).

[162] Shopify - All-In-One Commerce Solution. URL: https://www.shopify.com/
(visited on 07/23/2020).

[163] SSLyze - Fast and Powerful SSL/TLS Scanning Library. URL: https://github.
com/nabla-c0d3/sslyze/ (visited on 07/13/2020).

[164] Starboard - Kubernetes-native Security Tool Kit. URL: https://github.com/
aquasecurity/starboard (visited on 07/19/2020).

[165] Starboard - Roadmap. URL: https://github.com/aquasecurity/starboard/
blob/master/ROADMAP.md (visited on 07/19/2020).

[166] The BodgeIt Store. URL: https://github.com/psiinon/bodgeit (visited on
07/15/2020).

[167] The Go Programming Language. URL: https : / / golang . org/ (visited on
07/22/2020).

[168] Trivy - A Simple and Comprehensive Vulnerability Scanner for Containers,
Suitable for CI. URL: https://github.com/aquasecurity/trivy (visited on
06/30/2020).

[169] Vercel - Develop. Preview. Ship. URL: https://vercel.com/ (visited on 06/20/2020).
[170] ZAP Documentation - AJAX Spider. URL: https://www.zaproxy.org/docs/

desktop/addons/ajax-spider/ (visited on 07/14/2020).
[171] ZAP Documentation - API. URL: https://www.zaproxy.org/docs/api/ (visited

on 07/07/2020).
[172] ZAP Documentation - Spider. URL: https://www.zaproxy.org/docs/desktop/

start/features/spider/ (visited on 07/14/2020).
[173] ZAP Documentation - ZAPping the OWASP Top 10. URL: https://www.zaproxy.

org/docs/guides/zapping-the-top-10/ (visited on 07/08/2020).
[174] Zero Trust. URL: https://www.microsoft.com/en-us/security/business/

zero-trust (visited on 07/02/2020).

79

https://www.securecodebox.io
https://docs.microsoft.com/en-us/azure/aks/concepts-security
https://docs.microsoft.com/en-us/azure/aks/concepts-security
https://docs.aws.amazon.com/eks/latest/userguide/security.html
https://docs.aws.amazon.com/eks/latest/userguide/security.html
https://www.shopify.com/
https://github.com/nabla-c0d3/sslyze/
https://github.com/nabla-c0d3/sslyze/
https://github.com/aquasecurity/starboard
https://github.com/aquasecurity/starboard
https://github.com/aquasecurity/starboard/blob/master/ROADMAP.md
https://github.com/aquasecurity/starboard/blob/master/ROADMAP.md
https://github.com/psiinon/bodgeit
https://golang.org/
https://github.com/aquasecurity/trivy
https://vercel.com/
https://www.zaproxy.org/docs/desktop/addons/ajax-spider/
https://www.zaproxy.org/docs/desktop/addons/ajax-spider/
https://www.zaproxy.org/docs/api/
https://www.zaproxy.org/docs/desktop/start/features/spider/
https://www.zaproxy.org/docs/desktop/start/features/spider/
https://www.zaproxy.org/docs/guides/zapping-the-top-10/
https://www.zaproxy.org/docs/guides/zapping-the-top-10/
https://www.microsoft.com/en-us/security/business/zero-trust
https://www.microsoft.com/en-us/security/business/zero-trust

List of Figures

2-1 General overview of the distribution of security responsibilities between
cloud provider and consumer. From [25] 10

2-2 Overview of virtualization layers in different cloud systems. Blue back-
grounds indicate layers which are usually in the responsibility of the user.
Based on [133] . 15

2-3 Overview of components in a Kubernetes cluster. Based on [26, 124] . 17
2-4 Overview of the Kubernetes Reconciliation / Control Loop. Based on [26] 18

3-1 General overview of Attack Vectors in Kubernetes clusters. From [21] . 22
3-2 Kubernetes Security Boundaries. From [21] 26

4-1 Control / reconciliation loop of the auto-discovery controller. 34
4-2 Separation of concerns between Scan Execution and Scan Definition. . 37
4-3 Simplified system interactions of the auto-discovery prototype. 46

5-1 Kubernetes Resources of the Demo Environment 48
5-2 Overviews of the Scans created for the Individual Resources of the juice-

shop Kubernetes Namespace. 50
5-3 Scans created by the auto-discovery for the Resources in the juice-shop

Kubernetes Namespace. 50
5-4 All findings identified by the scans created by the auto-discovery for

OWASP Juice Shop, grouped by scanner and finding category. Colored
stripes indicating different finding categories. 51

5-5 All findings identified by the scans created by the auto-discovery for
OWASP Juice Shop, excluding Potential Backup File findings. Colored
stripes indicating different finding categories. 51

5-6 Scans created by the auto-discovery for the Resources in the bodgeit
Kubernetes Namespace. 56

80

List of Figures

5-7 All findings identified by the scans created by the auto-discovery for the
BodgeIt Store, grouped by scanner and finding category. Colored stripes
indicating different finding categories. 56

5-8 All findings identified by the scans created by the auto-discovery for the
BodgeIt Store, excluding container image vulnerability findings. Colored
stripes indicating different finding categories. 57

5-9 Package names of the vulnerable packages in the BodgeIt container
image identified by trivy . 58

5-10 Demonstration of Lifecycle Tracking for updated Deployments 60

81

A Appendix

A.1 Prototype Evaluation using OWASP Juice Shop

A.1.1 OWASP Juice Shop Deployment

apiVersion: v1
kind: Namespace
metadata:

name: juice−shop
annotations:

auto−discovery.experimental.securecodebox.io/enabled: "true"
−−−
apiVersion: apps/v1
kind: Deployment
metadata:

name: juice−shop
namespace: juice−shop
labels:

app: juice−shop
spec:

selector:
matchLabels:

app: juice−shop
replicas: 3
template:

metadata:
labels:

app: juice−shop
spec:

containers:
− name: juice−shop

image: bkimminich/juice−shop:snapshot
ports:

− name: http

82

A Appendix

containerPort: 3000
−−−
apiVersion: v1
kind: Service
metadata:

name: juice−shop
namespace: juice−shop
labels:

invasive−scans.auto−discovery.experimental.securecodebox.io: "true"
zap−hints.auto−discovery.experimental.securecodebox.io/spider: "ajax"

spec:
type: ClusterIP
ports:

− port: 3000
targetPort: http
protocol: TCP
name: http

selector:
app: juice−shop

−−−
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: juice−shop
namespace: juice−shop
labels:

invasive−scans.auto−discovery.experimental.securecodebox.io: "true"
zap−hints.auto−discovery.experimental.securecodebox.io/spider: "ajax"

annotations:
kubernetes.io/ingress.class: nginx
An annotation indicating the issuer to use.

cert−manager.io/cluster−issuer: letsencrypt−production
spec:

tls:
− secretName: juice−shop−tls−secret

hosts:
− juice−shop.demo.securecodebox.io

rules:
− host: juice−shop.demo.securecodebox.io

http:
paths:

− path: /
backend:

serviceName: juice−shop

83

A Appendix

servicePort: 3000

Listing A.1: Kubernetes manifests used to deploy OWASP Juice Shop application during
the prototype evaluation

A.1.2 Findings Identified for OWASP Juice Shop

All findings identified for Juice Shop: (excluding obvious Nikto false positive findings
of the category Potential Backup File and with duplicate findings, produced by both
scanning Ingress and Service Resources, filtered out)

Scanner Severity Name

zap-full-scan INFORMATIONAL .env Information Leak
zap-full-scan INFORMATIONAL Base64 Disclosure
zap-full-scan INFORMATIONAL Cookie Poisoning
zap-full-scan INFORMATIONAL Cookie Slack Detector
zap-full-scan INFORMATIONAL Information Disclosure - Suspicious Comments
zap-full-scan INFORMATIONAL Modern Web Application
zap-full-scan INFORMATIONAL Non-Storable Content
zap-full-scan INFORMATIONAL Storable and Cacheable Content
zap-full-scan INFORMATIONAL Storable but Non-Cacheable Content
zap-full-scan INFORMATIONAL Timestamp Disclosure - Unix
zap-full-scan INFORMATIONAL Trace.axd Information Leak
zap-full-scan INFORMATIONAL User Agent Fuzzer
zap-full-scan MEDIUM Hidden File Found
zap-full-scan MEDIUM .env Information Leak
zap-full-scan MEDIUM Apache Range Header DoS (CVE-2011-3192)
zap-full-scan MEDIUM Backup File Disclosure
zap-full-scan MEDIUM Cross-Domain Misconfiguration
zap-full-scan MEDIUM Session ID in URL Rewrite
zap-full-scan MEDIUM Source Code Disclosure - Java
zap-full-scan MEDIUM Trace.axd Information Leak
zap-full-scan MEDIUM X-Frame-Options Header Not Set
zap-full-scan MEDIUM HTTP Only Site
zap-full-scan MEDIUM Proxy Disclosure
zap-full-scan LOW Content Security Policy (CSP) Header Not Set

84

A Appendix

zap-full-scan LOW Cross-Domain JavaScript Source File Inclusion
zap-full-scan LOW Dangerous JS Functions
zap-full-scan LOW Feature Policy Header Not Set
zap-full-scan LOW Private IP Disclosure
zap-full-scan LOW X-Content-Type-Options Header Missing
zap-full-scan LOW Cookie Without Secure Flag
zap-full-scan LOW Incomplete or No Cache-control and Pragma HTTP

Header Set
zap-full-scan LOW Server Leaks Version Information via "Server"

HTTP Response Header Field
zap-full-scan HIGH SQL Injection - SQLite
zap-full-scan HIGH Cloud Metadata Potentially Exposed
trivy HIGH Allocation of Resources Without Limits or Throttling
trivy HIGH Verification Bypass
trivy HIGH nodejs-jsonwebtoken: verification step bypass with

an altered token
trivy HIGH Forgeable Public/Private Tokens
trivy HIGH Out-of-bounds Read
trivy HIGH lodash: Prototype pollution in utilities function
trivy HIGH nodejs-lodash: prototype pollution in defaultsDeep

function leading to modifying properties
trivy MEDIUM Authorization bypass in express-jwt
trivy MEDIUM Cross Site Scripting
trivy MEDIUM Moderate severity vulnerability that affects sanitize-

html
trivy MEDIUM Prototype pollution in lodash
trivy MEDIUM XSS - Sanitization not applied recursively
trivy MEDIUM moment.js: regular expression denial of service
trivy MEDIUM nodejs-lodash: prototype pollution in zipObject-

Deep function
trivy MEDIUM nodejs-moment: Regular expression denial of ser-

vice
trivy LOW lodash: Prototype pollution in utilities function
kubeaudit LOW Capability ’AUDIT_WRITE’ Not Dropped
kubeaudit LOW Capability ’CHOWN’ Not Dropped
kubeaudit LOW Capability ’DAC_OVERRIDE’ Not Dropped

85

A Appendix

kubeaudit LOW Capability ’FOWNER’ Not Dropped
kubeaudit LOW Capability ’FSETID’ Not Dropped
kubeaudit LOW Capability ’KILL’ Not Dropped
kubeaudit LOW Capability ’MKNOD’ Not Dropped
kubeaudit LOW Capability ’NET_BIND_SERVICE’ Not Dropped
kubeaudit LOW Capability ’NET_RAW’ Not Dropped
kubeaudit LOW Capability ’SETFCAP’ Not Dropped
kubeaudit LOW Capability ’SETGID’ Not Dropped
kubeaudit LOW Capability ’SETPCAP’ Not Dropped
kubeaudit LOW Capability ’SETUID’ Not Dropped
kubeaudit LOW Capability ’SYS_CHROOT’ Not Dropped
kubeaudit LOW Container Uses a non ReadOnly Root Filesystem
kubeaudit LOW Default ServiceAccount uses Automounted Service

Account Token
kubeaudit MEDIUM NonRoot User not enforced for Container
nikto INFORMATIONAL "robots.txt" contains 1 entry which should be man-

ually viewed.
nikto INFORMATIONAL Entry ’/ftp/’ in robots.txt returned a non-forbidden

or redirect HTTP code (200)
nikto INFORMATIONAL Retrieved access-control-allow-origin header: *
nikto INFORMATIONAL Uncommon header ’feature-policy’ found, with con-

tents: payment ’self’
nikto INFORMATIONAL The Content-Encoding header is set to "deflate"

this may mean that the server is vulnerable to the
BREACH attack.

nikto INFORMATIONAL The site uses SSL and Expect-CT header is not
present.

nikto LOW The X-XSS-Protection header is not defined. This
header can hint to the user agent to protect against
some forms of XSS

kube-hunter LOW Access to pod’s secrets
kube-hunter LOW CAP_NET_RAW Enabled
kube-hunter LOW Read access to pod’s service account token
sslyze INFORMATIONAL TLS Service

86

A Appendix

A.2 Prototype Evaluation using BodgeIt Store

A.2.1 BodgeIt Store Deployment

apiVersion: v1
kind: Namespace
metadata:

name: bodgeit
annotations:

auto−discovery.experimental.securecodebox.io/enabled: "true"
−−−
apiVersion: apps/v1
kind: Deployment
metadata:

name: bodgeit
namespace: bodgeit
labels:

app: bodgeit
spec:

selector:
matchLabels:

app: bodgeit
replicas: 1
template:

metadata:
labels:

app: bodgeit
spec:

containers:
− name: bodgeit

image: j12934/bodgeit:latest
ports:

− name: http
containerPort: 8080

−−−
apiVersion: v1
kind: Service
metadata:

name: bodgeit
namespace: bodgeit
labels:

invasive−scans.auto−discovery.experimental.securecodebox.io: "true"
spec:

type: ClusterIP

87

A Appendix

ports:
− port: 8080

targetPort: http
protocol: TCP
name: http

selector:
app: bodgeit

−−−
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:

name: bodgeit
namespace: bodgeit
labels:

invasive−scans.auto−discovery.experimental.securecodebox.io: "true"
annotations:

kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/app−root: /bodgeit
An annotation indicating the issuer to use.

cert−manager.io/cluster−issuer: letsencrypt−production
spec:

tls:
− secretName: bodgeit−tls−secret

hosts:
− bodgeit.demo.securecodebox.io

rules:
− host: bodgeit.demo.securecodebox.io

http:
paths:

− path: /
backend:

serviceName: bodgeit
servicePort: 8080

Listing A.2: Kubernetes manifests used to deploy the BodgeIt Store application during
the prototype evaluation

A.2.2 Findings Identified for BodgeIt Store

All findings identified for BodgeIt Shop: (Excluding trivy findings to preserve space and
with duplicate findings, produced by both scanning Ingress and Service Resources,
filtered out)

88

A Appendix

Scanner Severity Name

zap-full-scan LOW Absence of Anti-CSRF Tokens
zap-full-scan LOW Application Error Disclosure
zap-full-scan LOW Content Security Policy (CSP) Header Not Set
zap-full-scan LOW Cookie No HttpOnly Flag
zap-full-scan LOW Cookie Slack Detector
zap-full-scan LOW Cookie Without SameSite Attribute
zap-full-scan LOW Feature Policy Header Not Set
zap-full-scan LOW In Page Banner Information Leak
zap-full-scan LOW Information Disclosure - Debug Error Messages
zap-full-scan LOW Server Leaks Version Information via "Server"

HTTP Response Header Field
zap-full-scan LOW X-Content-Type-Options Header Missing
zap-full-scan LOW Cookie Without Secure Flag
zap-full-scan LOW Dangerous JS Functions
zap-full-scan LOW Incomplete or No Cache-control and Pragma HTTP

Header Set
zap-full-scan LOW Private IP Disclosure
zap-full-scan LOW Strict-Transport-Security Header Not Set
zap-full-scan INFORMATIONAL Information Disclosure - Suspicious Comments
zap-full-scan INFORMATIONAL Cookie Slack Detector
zap-full-scan INFORMATIONAL Modern Web Application
zap-full-scan INFORMATIONAL Non-Storable Content
zap-full-scan INFORMATIONAL Storable and Cacheable Content
zap-full-scan INFORMATIONAL User Agent Fuzzer
zap-full-scan INFORMATIONAL User Controllable HTML Element Attribute (Poten-

tial XSS)
zap-full-scan INFORMATIONAL Base64 Disclosure
zap-full-scan INFORMATIONAL Content-Type Header Missing
zap-full-scan INFORMATIONAL Cookie Poisoning
zap-full-scan INFORMATIONAL GET for POST
zap-full-scan INFORMATIONAL Information Disclosure - Sensitive Information in

URL
zap-full-scan INFORMATIONAL Timestamp Disclosure - Unix
zap-full-scan MEDIUM Insecure HTTP Method - PUT
zap-full-scan MEDIUM X-Frame-Options Header Not Set

89

A Appendix

zap-full-scan MEDIUM XSLT Injection
zap-full-scan MEDIUM .env Information Leak
zap-full-scan MEDIUM Application Error Disclosure
zap-full-scan MEDIUM Buffer Overflow
zap-full-scan MEDIUM Format String Error
zap-full-scan MEDIUM HTTP Only Site
zap-full-scan MEDIUM Integer Overflow Error
zap-full-scan MEDIUM Proxy Disclosure
zap-full-scan MEDIUM Relative Path Confusion
zap-full-scan MEDIUM Reverse Tabnabbing
zap-full-scan MEDIUM Source Code Disclosure - ActiveVFP
zap-full-scan MEDIUM Source Code Disclosure - SQL
zap-full-scan MEDIUM Source Code Disclosure - Servlet
zap-full-scan MEDIUM Trace.axd Information Leak
zap-full-scan MEDIUM Weak Authentication Method
zap-full-scan HIGH Anti-CSRF Tokens Check
zap-full-scan HIGH Cross Site Scripting (Reflected)
zap-full-scan HIGH SQL Injection
kubeaudit LOW Capability ’AUDIT_WRITE’ Not Dropped
kubeaudit LOW Capability ’CHOWN’ Not Dropped
kubeaudit LOW Capability ’DAC_OVERRIDE’ Not Dropped
kubeaudit LOW Capability ’FOWNER’ Not Dropped
kubeaudit LOW Capability ’FSETID’ Not Dropped
kubeaudit LOW Capability ’KILL’ Not Dropped
kubeaudit LOW Capability ’MKNOD’ Not Dropped
kubeaudit LOW Capability ’NET_BIND_SERVICE’ Not Dropped
kubeaudit LOW Capability ’NET_RAW’ Not Dropped
kubeaudit LOW Capability ’SETFCAP’ Not Dropped
kubeaudit LOW Capability ’SETGID’ Not Dropped
kubeaudit LOW Capability ’SETPCAP’ Not Dropped
kubeaudit LOW Capability ’SETUID’ Not Dropped
kubeaudit LOW Capability ’SYS_CHROOT’ Not Dropped
kubeaudit LOW Container Uses a non ReadOnly Root Filesystem
kubeaudit LOW Default ServiceAccount uses Automounted Service

Account Token
kubeaudit MEDIUM NonRoot User not enforced for Container

90

A Appendix

nikto INFORMATIONAL /favicon.ico file identifies this app/server as:
Apache Tomcat (possibly 5.5.26 through 8.0.15),
Alfresco Community

nikto INFORMATIONAL The X-Content-Type-Options header is not set.
This could allow the user agent to render the con-
tent of the site in a different fashion to the MIME
type

nikto INFORMATIONAL Allowed HTTP Methods: GET, HEAD, POST, PUT,
DELETE, OPTIONS

nikto INFORMATIONAL HTTP method (’Allow’ Header): ’DELETE’ may al-
low clients to remove files on the web server.

nikto INFORMATIONAL HTTP method (’Allow’ Header): ’PUT’ method
could allow clients to save files on the web server.

nikto INFORMATIONAL The site uses SSL and Expect-CT header is not
present.

nikto INFORMATIONAL The site uses SSL and the Strict-Transport-Security
HTTP header is not defined.

nikto LOW The X-XSS-Protection header is not defined. This
header can hint to the user agent to protect against
some forms of XSS

nikto LOW The anti-clickjacking X-Frame-Options header is
not present.

kube-hunter LOW Access to pod’s secrets
kube-hunter LOW CAP_NET_RAW Enabled
kube-hunter LOW Read access to pod’s service account token
sslyze INFORMATIONAL TLS Service

91

	Introduction
	Motivation
	Research Plan
	Prior Art

	Kubernetes as a Cloud Environment
	What is a Cloud Environment?
	Distribution of Security Responsibilities

	What is Kubernetes?
	History of Kubernetes
	How Kubernetes is Used
	Classification of Kubernetes in the Cloud Landscape

	Anatomy of a Kubernetes Cluster

	Security in Kubernetes Applications
	Security Aspects of Kubernetes Components
	Security Aspects of Application running inside Kubernetes Clusters
	Privilege Escalation in Kubernetes Clusters

	Automatic Security Verification in Kubernetes Prototype
	Prototype Goals
	Application Lifecycle Tracking
	Comparison to Continuous Integration Approaches

	Prior Art
	Architecture of the Prototype
	SecureCodeBox Security Test Orchestration
	Automatic Security Assessment of HTTP Services
	External Attack Surface via Ingress Resources
	Internal Attack Surface via Service Resources
	Scanners used for the Security Assessment

	Automatic Security Assessment of Container Images
	Automatic Security Assessment of Kubernetes Namespaces
	Example Auto-Discovery Process

	Prototype Verification
	Evaluation Cluster Setup
	Auto-Discovery Scan Results for OWASP Juice Shop
	Scans Created by the Auto-Discovery Prototype
	Finding Overview
	Problems while Scanning Juice Shop

	Auto-Discovery Scan Results for BodgeIt Store
	Scans Created by the Auto-Discovery Prototype
	Finding Overview
	Problems while Scanning BodgeIt Store

	Application Lifecycle Tracking
	Prototype Result Summary

	Conclusion
	Summary
	Future Work

	Appendix
	Prototype Evaluation using OWASP Juice Shop
	OWASP Juice Shop Deployment
	Findings Identified for OWASP Juice Shop

	Prototype Evaluation using BodgeIt Store
	BodgeIt Store Deployment
	Findings Identified for BodgeIt Store

